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Abstract

We propose a computationally simple semiparametric discrete choice estimator to model rich

consumer heterogeneity. We assume groups of observably similar consumers have similar pref-

erences, but allow preferences to vary freely across these groups. Model flexibility is easily

adjusted by setting a single tuning parameter; we suggest a cross-validation method to do so.

We analyze the model’s properties in the context of hospital mergers, both analytically and via

a Monte Carlo analysis. The model performs well for policy relevant substitution and welfare

measures, even if misspecified, when the tuning parameter is set within the neighborhood of

the value chosen by cross-validation.
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1 Introduction

Individual level data on consumer choices can significantly improve predictions of consumer

substitution patterns (Berry et al. (2004)). Over the past twenty years, these data have

become increasingly available to researchers, a trend that seems likely to continue into the

future. Individual level data facilitate the estimation of models with rich individual hetero-

geneity, which can yield more accurate out-of-sample predictions of individual choices than

models that are less flexible along this dimension (Raval et al. (2015)).

However, the estimation of more flexible models can be fraught with statistical and com-

putational concerns. In a context similar to ours, Ho and Pakes (2014) note that estimating

models with many dummy variables via maximum likelihood can lead to an incidental param-

eters problem. Beyond these econometric concerns, estimating this type of model involves

computational issues that are likely to consume significant researcher time (Greene (2004)).

We outline a computationally light semiparametric estimator to flexibly estimate con-

sumer choice probabilities, substitution patterns, and welfare.1 In our estimator, an iterative

procedure groups consumers with similar characteristics across multiple dimensions. In order

to estimate choice probabilities, we assume that agents’ choice probabilities are proportional

to the share of the chosen option within a group. To compute substitution patterns and

welfare, we further assume that agents substitute in proportion to choice shares within the

group. After imposing this additional assumption, our estimator can be viewed as equivalent

to estimating a highly flexible multinomial logit model.

1This estimator is also easy to implement via the MapReduce algorithm for parallelization, which would
reduce computational costs even further.

2



Our estimator has one major tuning parameter, the minimum group size. The minimum

group size parameter balances the bias-variance trade-off between greater bias from larger

groups and greater variance from smaller groups. This parameter can be adjusted easily and

transparently to make the estimator more or less flexible depending on the characteristics of

a given dataset. If we set this parameter equal to one, our estimator collapses to a standard

frequency estimator that would group all individuals with the same characteristics. To set

the minimum group size, we propose using “leave one out” cross-validation. With large

numbers of observations relative to the number of characteristics, the number of people in

each group is likely to be sufficiently large such that the share of each group that selects a

given choice can be precisely estimated for a large number of groups.

We apply the estimator to hospital discharge data and estimate both choice probabilities

and proxies for the change in market power after a merger. In particular, we use the estimator

to compute two measures that are widely used as proxies for insurer leverage in merger

analysis: diversion ratios, which summarize consumer substitution between the merging

providers, and willingness to pay, which is a measure of welfare (Shapiro (1996), Capps et al.

(2003), Farrell et al. (2011), Gowrisankaran et al. (2015)). In our application, our estimates

of the post-merger change in market power are both large and not sensitive to the group size

tuning parameter so long as it is set within an intermediate range. However, the percent

change in willingness to pay is more sensitive to the minimum group size than the diversion

ratio.

We then examine our estimator’s robustness to misspecification using a Monte Carlo

exercise. For an intermediate range of the minimum group size, the estimator has a low rate

of error for the diversion ratio, percent change in willingness to pay, and individual choice
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probabilities across different specifications of the “true” model, including a semiparametric

model with extremely large preference heterogeneity and a parametric logit model. However,

we find greater sensitivity to the minimum group size parameter for predicting individual

choice probabilities and the percent change in WTP. We also find only modest increases

in error for much lower sample sizes than in our main specification. Thus, the estimator

performs well if it is not implemented in an overly flexible or inflexible manner.

We do find, however, that the estimator’s performance depends upon the order of group-

ing variables. The performance is considerably worse when, given a true model with location

variables as the first variables used for grouping, location variables are the last variables to

be used for grouping. Therefore, in order to implement the estimator, researchers will need

information on the best ordering of these grouping variables. While researchers will need

some knowledge of the data to ensure that the covariates that are likely to be most important

in explaining consumer choice are given priority, we show that cross-validation can assist in

picking the best grouping order from a set of alternatives. In addition, a lower minimum

group size can partially compensate for an incorrect variable ordering.

Our estimator builds on both frequency and multinomial logit estimators. Compared to

a simple nonparametric frequency estimator, we provide an algorithm to allocate individ-

uals with different characteristics into groups. Compared to the empirical literature using

multinomial logit estimators, we provide a computationally simple way to estimate flexi-

ble substitution patterns with rich microdata. Our estimator allows researchers to allow a

large number of dummy variables in a logit framework without the computational concerns

outlined in Greene (2004). In this sense, our estimator is semiparametric; while we assume

a logit error in order to predict substitution patterns and welfare, the estimator provides
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nonparametric estimates of choice probabilities.

Our estimator is also complementary to a machine learning decision tree approach (Breiman

et al. (1984)). Both approaches segment the data into a large number of groups, and es-

timate predicted probabilities for each group. A decision tree approach does not require

knowledge of the correct order of variables for grouping. However, the decision tree’s use of

in-sample model fit to create groups creates a pre-test bias, which invalidates conventional

inference procedures.2 Because measures of variable importance from a decision tree could

be used as an alternative to cross-validation or domain knowledge to select the ex-ante order

of variables for our approach, the decision tree approach provides a useful complement to

our estimator.

Some previous work has used the estimator we outline here. Carlson et al. (2013) discuss

how a version of our estimator has been used for policy analysis, but do not examine its

sensitivity. Raval et al. (2015) examine the performance of a version of the estimator using a

set of natural experiments. In particular, they find that following the exogenous elimination

of a choice from the choice set, a version of our approach does a better job of predicting

consumer substitution patterns than the parametric specifications that are frequently used

in the literature. In contrast to those papers, the main contribution of this paper is to

formally outline the estimator and examine its sensitivity to the tuning parameter, model

misspecification, and the size of the dataset.

Beyond health care, our estimator can be used in any situation where a researcher would

use a discrete choice approach to model the counterfactual elimination of an option from

2Econometricians are actively developing techniques to allow inference for regression tree models; see
Athey and Imbens (2015), for example.
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a choice set. It can be directly applied to merger analysis in industries, such as medical

devices or television, where prices are determined by bargaining between a supplier and

an intermediary (Grennan (2013), Crawford and Yurukoglu (2012)). More broadly, the

estimation of the Upward Pricing Pressure (“UPP”) of a merger, which requires the diversion

ratio in response to a small price change, can use this counterfactual diversion ratio given

certain assumptions on demand (Farrell and Shapiro (2010), Conlon and Mortimer (2013),

Jaffe and Weyl (2013)).3 In addition to modeling the elimination of an option from a choice

set, when researchers have access to data on product characteristics, they can project these

characteristics off of the estimated mean utilities in order to conduct counterfactuals in which

product characteristics change.

Our approach to demand estimation is most useful when researchers have available de-

tailed information on the demographics relevant for consumer decision-making, when the

dataset is large, and when product characteristics are not particularly informative of choice.

Many markets outside of health care fit this description. For example, online markets for

goods may have limited information on product attributes other than a “star rating,” but

have detailed information on consumers based on their browsing behavior or their previous

purchases. In retail markets such as grocery stores or pharmacies, geographic differences are

the main source of individual heterogeneity in purchasing patterns and are often available

through loyalty card data, whereas little information may exist on differences in store qual-

ity. In addition, our approach allows for a more granular conception of distance – through

zip codes or census blocks – which may better represent preferences than travel time, as is

3The diversion ratio calculated based on eliminating a choice from the choice set is equal to the diversion
ratio in response to a small price change under linear demand or the representative consumer logit model
(Conlon and Mortimer (2013)).
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typically used in the health care and environmental travel cost literatures.

The paper proceeds as follows. In Section 2 we outline our approach, in Section 3 we

introduce our empirical application, and in Section 4 we show results for our Monte Carlo

simulation. We conclude in Section 5.

2 Logit Choice Models

In this section, we first detail the parametric logit choice model typically used in the hospital

choice literature, and then introduce our semiparametric estimator. We discuss our approach

in the context of a patient’s choice of provider, but it can be applied in any multinomial

choice context where one has access to individual level data.4

2.1 Parametric

Each patient i chooses the specific hospital j from the set of hospitals J . The utility uij that

patient i receives from choosing hospital j is specified as follows:

uij = δij + εij. (1)

Utility uij is determined by mean utility δij and an i.i.d. error term εij that is distributed

Type I extreme-value. Each patient selects the utility maximizing option from the set of

hospital choices J .

While mean utility δij may be determined by numerous factors, the literature usually

4See Ackerberg et al. (2007) for further discussion of these models in general and Gaynor et al. (2015) for
further elaboration in the health care context.
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assumes a functional form in which δij depends on patient characteristics, hospital charac-

teristics, and travel costs between patient i and hospital j. Hospital characteristics control

for the set of services offered at a given hospital and the overall quality of those services.

Travel costs capture the fact that patients are, all else equal, more likely to select hospitals

close to where they live. Patient characteristics, such as an individual’s medical condition

and demographics, are interacted with travel costs and hospital characteristics. For example,

a patient in labor may be more likely to go to a hospital with a labor and delivery room.

Under the assumed error structure, the ex-ante probability sij that patient i selects hospital

j follows the familiar logistic form:

sij =
exp(δij)∑
k∈J exp(δik)

. (2)

Given a set of patient and hospital interactions, a functional form for these interactions,

and the observed hospital choice for each patient, the parametric logit model can be estimated

via maximum likelihood. Capps et al. (2003), Gowrisankaran et al. (2015), and Ho (2006)

all estimate parametric logit models with different specifications for δij. After recovering

the vector of δij’s, it is straightforward to compute substitution patterns if any option is

eliminated from the choice set.

The difficulty in designing such a hospital choice model lies in how to allow for hetero-

geneity in preferences across patients. Any two individuals with the same δij for all j will

have the same substitution patterns following the elimination of a choice from the choice

set. Therefore, the degree of flexibility in δij determines the flexibility of the allowed substi-

tution patterns. Even with rich individual data, as is available in the hospital context, the
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researcher typically specifies a parameterized function.

The degree of flexibility in δij affects the accuracy of predicted substitution patterns.

Raval et al. (2015) compare parameterizations of δij from the literature that allow for varying

levels of heterogeneity in the population. Their results show that models that richly account

for heterogeneity based on patient observables (more allowed heterogeneity in δij) provide

for more accurate out-of-sample predictions of individual choices than models that are less

flexible along this dimension.

2.2 Semiparametric

With our estimator, we are able to move away from the restrictive parameterizations of δij

by employing two assumptions. First, we assume that an individual’s choice probability for a

given facility is equal to that of a group of similar patients. Second, we assume that, within

their group, patients substitute proportionally to all alternatives. However, we allow for

substitution patterns to freely vary across groups. Therefore, defining these groups of similar

patients in a way that there is sufficient power in each group to estimate choice probabilities

is key to our approach. We begin with a discussion of how we partition individuals into

groups and then discuss how those groups allow us to estimate choice probabilities and

substitution patterns.

We consider a case where the researcher has an individual level dataset with c individ-

ual characteristics and consumer choices. For example, in our application these individual

characteristics include information on demographics, location of residence, and reason for

hospital admission. The consumer choice is patients’ choice of hospital.
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In order to partition individuals into G groups (indexed by g), we place patients having

the same values for all c characteristics into the same group. We keep groups that have at

least Smin observations, where Smin is a tuning parameter. For the remaining individuals who

are not in groups with at least Smin observations, we then repeat this procedure using only

the first c−1 characteristics. The excluded characteristic is determined by the predetermined

ordering of characteristics. In particular, we order all characteristics according to our beliefs

about which characteristics are most likely to predict choices. The first characteristic we

eliminate is the one that we think is least important in predicting patient choices. We then

iterate on this procedure, reducing the number of characteristics by one each time, until all

patients are allocated into groups. For each iteration, we eliminate the characteristic that

we believe is least likely to predict choices from the set of remaining characteristics.

In order to compute choice probabilities, we first assume that individuals’ choice probabil-

ities are equal to that of the other individuals in their group. Therefore, we can compute an

estimate of these probabilities by computing the share of individuals within each group that

go to each facility. If one is only interested in choice probabilities, no stronger assumptions

are required.

However, more structure is required to estimate substitution patterns or welfare. In

order to do so, we assume that a patient’s utility for a hospital is equal to mean utility δgj

for all individuals i in group g plus an i.i.d. logit error draw, so our approach is equivalent

to estimating a multinomial logit model with a dummy variable for each hospital-group

combination. When viewed in this light, our key assumption is that observably similar

patients – patients within a group – are also unobservably similar except for an i.i.d. logit

error. This logit error makes the approach semiparametric. Given the logit assumptions and
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a vector of δgj ’s, the probability that patient i in group g selects hospital j is as follows:

si(g)j = sgj =
exp(δgj )∑
k∈J exp(δgk)

. (3)

As noted above, we estimate ŝgj directly rather than estimating each δ̂gj and using them to

compute ŝgj .

Thus, to apply our approach one needs to set a minimum group size (Smin) and have an

ordering of characteristics. We discuss the choice of Smin here, and defer our discussion of

how to order characteristics until Section 3.

The choice of minimum group size, Smin, must be set to balance a bias-variance trade-off,

which we discuss in Appendix A. A smaller value of Smin leads to a more flexible model with

possibly many groups of small size, which will lead to large variance but low bias. A higher

value of Smin leads to a coarser grouping, which will mean lower variance but higher bias.

Thus, the minimum group size functions analogously to a bandwidth parameter in kernel

density estimation.5 In our empirical application, we calibrate this parameter using “leave

one out” cross-validation.

We have to confront two other issues when implementing this estimator. First, our

approach requires discrete variables; therefore non discrete variables, such as age, must be

discretized into categories. Second, a small number of ungrouped individuals may remain

after iterating across characteristics as described above. If so, the remaining observations

can either be grouped together or simply omitted from the analysis.6

5See Pagan and Ullah (1999) for a comprehensive treatment of kernel density estimation.
6In practice, only a few patients are left ungrouped, with only 5 patients (0.004%) remaining ungrouped

in our empirical application for a group size of 3 and 1334 patients (1%) for a group size of 50. In our
application, we put these individuals together into their own group.
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We can calculate standard errors for our estimates using the bootstrap, which is appro-

priate as long as the minimum group size is not too large. The bootstrap may not be valid

for nonparametric and semiparametric estimates because of a potentially slower than
√
n

rate of convergence (Horowitz, 2001). Bootstrapped standard errors are appropriate here

since there is a fixed maximum number of groups. Therefore, as the number of observations

n goes to infinity, the number of groups remains constant once it reaches this maximum.

However, in finite samples, extremely large minimum group sizes may over smooth the data

compared to the true distribution of groups, and so lead to a biased estimate of the statistic

of interest and the standard errors. We thus do not recommend the use of extremely large

minimum group sizes.

2.2.1 Cross-Validation

We propose a “leave one out” cross-validation approach (Stone (1974)) to select the minimum

group size.7 In this approach, the researcher estimates a candidate model m on all of the

data, except for one observation. Then the researcher compares the predicted value for that

observation from model m to the observed value for that observation. Iterating over all

observations yields a vector of predicted values from a given model and a vector of observed

values corresponding to each prediction. Using these two vectors, one can compute a measure

of the out-of-sample fit for model m.

For our context, we examine model fit for different minimum group sizes. For a given

minimum group size, we estimate the model using all of the data except for observation i.

This assigns all observations, except for i, to groups and gives a predicted share for all groups

7As we show, this cross-validation approach can also be used for variable ordering.
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and hospitals. We then regroup all observations, including observation i, into a new set of

groups. We take the set of individuals that are in i’s group in the “including i” grouping and

compute their predicted values from the “excluding i” estimation. We use the average of

these predicted values as individual i’s predicted choice probability for the cross-validation.

One can use different loss functions to measure the goodness of model fit in the cross-

validation. For illustrative purposes, we use root mean squared error (“RMSE”) and Mc-

Fadden’s pseudo R2.

To compute the RMSE for minimum group size m, we take the difference between the

predicted and actual choices for each individual and sum over all individuals in the dataset:

RMSEm =

√√√√ 1

NJ

N∑
i=1

J∑
j=1

(ŝmij − yij)2, (4)

where yij equals 1 if individual i chose hospital j and 0 if not, and ŝmij is the predicted choice

probability using a minimum group size of m.

McFadden’s pseudo R2 is inversely proportional to the log likelihood of the model. To

compute the log likelihood for minimum group size m, we take the log of the predicted choice

probability for the actual choice:

Em =
1

N

N∑
i=1

log(ŝmij∗), (5)

where ŝmij∗ is the predicted choice probability of the chosen option using a minimum group

size of m. This statistic is also called the relative entropy of the model.8 McFadden’s pseudo

8Since for many minimum group sizes there are observations where ŝmij∗ is zero, we use a bottom code (e.g.,
assign values below a specific threshold to the value at that threshold) when computing the log likelihood.
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R2 then scales the log likelihood to range between 0 and 1 as follows:

R2 = 1− Em

EIntercept
, (6)

where EIntercept is the log likelihood of a model that only includes an intercept, so each

hospital is predicted to have a 1
J

share of the market. An R2 value of zero indicates a model

with the same log likelihood as an intercept only model, and an R2 value of one perfectly

predicts the data.

In our empirical application, we use two different approaches to compute goodness of fit

statistics. First, we compute goodness of fit as described above, and use every observation

in the dataset for cross-validation (i.e., at some point, every person in the dataset is “left

out”). We also apply an alternative approach in which we leave out only a random sample

of observations in the data to reduce the computational time required.9

3 Application to Hospital Mergers

3.1 Hospital Merger Setting

We examine data from two hospital systems in a mid-sized metropolitan area, where one of

the larger systems in the area (“System 1”) proposed acquiring one of the smaller systems

(“System 2”). For confidentiality reasons we do not reveal the identity of the firms.

Our empirical analysis relies on inpatient discharge data for patients living in the metropoli-

9In this approach, we use the full dataset, except for the excluded individual, in the estimation. The only
difference is that we do not use all individuals in the dataset for validation.
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tan area where the merging parties are located.10 This dataset contains 124,237 adult com-

mercial admissions.11 For each hospital admission, we observe patient age, gender, zip code,

Diagnostic Related Group (“DRG”),12 Major Diagnostic Category (“MDC”),13 and whether

the admission was an emergency.

We group admissions using the iterative procedure detailed in Section 2.2. For our

baseline specification, we select the variable order based on two criteria. First, we put

each type of variable in descending order of its likely importance in determining hospital

choice. That way, to the extent necessary to maintain sufficient group sizes, individuals

that differ with respect to less important types of variables are pooled together first. We

assume patient location is the most important predictor, followed by admission type and

patient demographics. Our second criterion is that, within each variable type, we order the

characteristics from the least to most detail. This allows a finer measure to be employed

when group sizes are sufficiently large (e.g., DRG), but a coarser measure for smaller groups

(e.g., MDC).

In order, the variables used to group admissions are as follows:

1. Patient Location (L)
(a) County
(b) Zip code

2. Admission Type (A)
(a) MDC
(b) Emergency admission indicator

10This area is largely self-contained. The vast majority of patients living in the area are treated there,
and few patients who are treated at area hospitals come from outside the region.

11Children are omitted because the merging parties rarely admit them. We also remove patients with
psychiatric, substance abuse, or rehabilitation diagnoses, and patients transferred out of a hospital to another
acute care facility.

12The DRG system is a widely employed method of classifying hospital cases which contains hundreds of
different “services” that a hospital may offer.

13The MDC system groups DRGs into 25 mutually exclusive categories. We aggregate a small number of
MDC groups with very few admissions.
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(c) DRG type (medical vs. surgical)
(d) DRG weight quartile14

(e) DRG
3. Patient Demographics (D)

(a) Age group (18-45, 46-62, and 62+)
(b) Gender

3.2 Statistics of Interest

Antitrust agencies assessing the likely competitive impact of a proposed merger use hospital

choice models to calculate measures of substitution between the hospitals (Farrell et al.

(2011)). We focus on two widely employed statistics. The first is a substitution measure

known as the “diversion ratio” (Shapiro (1996)). The diversion ratio from hospital h to

hospital j measures the fraction of hospital h’s patients who would switch to hospital j

if hospital h were removed from the choice set. In the logit context, the diversion from

hospital h to hospital j is proportional to hospital j’s share relative to the other hospitals in

the market:

divihj =
sij

1− sih
. (7)

The overall diversion divhj from hospital h to hospital j is obtained by computing the average

patient-level diversion across the set of patients that select hospital h:

divhj =
1

Nh

∑
i

divihj, (8)

14DRG weights are a resource intensity measure used by Medicare to calculate hospital reimbursement.
DRG weights are a relative measure, defined such that the resource intensity of the average admission equals
one. We group highly complex tertiary admissions separately, which we define as those with a DRG weight
greater than 2.
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where the sum is only over the Nh patients who chose hospital h.

The second statistic that we consider is the post-merger percent change in a metric known

as “willingness to pay” (“WTP”). Developed by Capps et al. (2003), WTP measures the

reduction in consumers’ expected utility from removing a set of hospitals from the choice

set. In the logit model, the ex-ante expected decline in patient i’s welfare from excluding a

set of hospitals S ⊂ J is as follows:

WTPiS = − ln(1−
∑
j∈S

sij). (9)

A patient’s WTP is an increasing function of the probability s/he will select a hospital in

set S, and equals zero when that probability is zero. Overall WTP is obtained by adding up

patient-level WTP across all patients.

The antitrust agencies have used WTP to assess the expected harm from a merger of two

hospital systems (Farrell et al. (2011)). The combined system’s bargaining position changes

post-merger, since it can now threaten to exclude both systems simultaneously from the

provider’s network. Let WTP12 represent the WTP for the combined system, and WTP1

and WTP2 for System 1 and System 2 individually. If the two systems are substitutes, then

the loss in welfare from simultaneously excluding both systems exceeds the sum of the losses

from individually excluding each system. The percentage increase in WTP resulting from a

merger between the two systems can then be calculated as follows:

∆WTP12 =
WTP12

WTP1 +WTP2

− 1. (10)
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This measure has the property that it equals zero when the two systems are not substitutes,

and is an increasing function of the level of substitution between the two systems.

In order to estimate a diversion ratio or obtain a finite WTP measure using our approach,

group members must differ in the system they chose. While this is generally true for large

groups, hospital choice homogeneity becomes more likely in a group consisting of only a

handful of individuals. In practice, we exclude admissions where a diversion ratio cannot

be calculated from estimates of the choice probability for that group since there was no

variation in choices within the group. Further, we bound any measure of WTP by imposing

a top code at a share of 95%; if one of the merging partners hits this bound, the bound will

imply a zero change in WTP.

3.3 Merger Estimates

We use the 124,237 observations of the hospital discharge data to estimate the semiparametric

choice model for a minimum group size Smin from 3 to 50,000. Selecting such a wide range

of values for Smin allows us to compare results for extremely flexible and inflexible models,

as well as intermediate specifications. Depending on the choice of Smin, admissions are put

in between one and 23,157 groups. The most flexible specification has a pseudo R2 of 0.70,

while the least flexible specification has a pseudo R2 of only 0.18. We then estimate diversion

ratios and the change in WTP for the two hospital systems for each value of Smin. Given the

results of prior research, we assume the variable ordering of LAD, or Location, Admission

Type, and then Demographics, as in Table 3.1.

We apply the cross-validation approach described above in Section 2.2.1 to select a value
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for Smin given the LAD ordering. Figure 1a displays the cross-validation results based upon

the RMSE when we use all the observations in the data for cross-validation for Smin. RMSE

is minimized at a minimum group size of 25.

The optimal minimum group size does depend upon the loss function that we use. For

example, McFadden’s pseudo R2 is maximized at a minimum group size of 10.15 For models

with a minimum group size under the optimum, the benefit of the increased model flexibility

is outweighed by the cost of the lower power of the ŝgj estimates. Conversely, for a minimum

group size above the optimum, the benefits of the increased model flexibility outweigh the

cost associated with lower statistical power. Since the RMSE and McFadden’s pseudo R2

approaches penalize errors differently, they weigh this trade-off differently.

Cross-validation on a very large dataset could take hours of computational time. There-

fore, we also conduct a cross-validation for the choice of minimum group size using a random

sample of the data, as described above in Section 2.2.1. In this alternative cross-validation,

we randomly select 1,000 observations from the data to serve as our validation points. This

cross-validation takes only minutes of computational time on a standard desktop computer

and yields similar results to cross-validation on the full dataset. This result is reassuring,

since it suggests that a cross-validation exercise to suggest the minimum group size can be

done quickly.16

15The McFadden’s pseudo R2 statistic reported in the text uses a “bottom code” of .05, which is consistent
with our approach in setting a top code for WTP. A smaller bottom code will heavily penalize choice
probabilities at or near zero and is maximized at a larger minimum group size.

16We sample one thousand people from the data fifty times. The results obtained using sampling are
similar to those from using the full data set. For RMSE, in 82% of the data samples, a minimum group size
of 25 minimizes the RMSE. For the remainder, the RMSE is smallest for a minimum group size of either 10
or 50 (14% and 4% of the data samples, respectively). For the pseudo R2 measure, in 52% of the samples,
a minimum group size of 10 maximizes the statistic. For the remainder, the minimum group size is either 3
(2%), 5 (40%), or 25 (6%).
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(a) Smin (b) Variable Order

Figure 1 RMSE from Leave One Out Cross-Validation by Smin and Variable Order

Note: Cross-validation for the minimum group size uses the variable ordering LAD and cross-
validation for the variable ordering uses a minimum group size of 25.

(a) Diversion Ratio (b) Percent Change in WTP

Figure 2 Estimated Diversion Ratio and Percent Change in WTP by Smin

Note: Diversion ratio is from System 2 to System 1. The left axis indicates the estimated value
of the statistic, and the right axis the estimates scaled by the value of the statistic at a minimum
group size of 25. Table I presents these estimates numerically.
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We then examine the diversion ratio from System 2 to System 1 and the percent change

in WTP for different values of the tuning parameter.17 Figure 2a depicts this diversion ratio

for different values of the minimum group size, while Figure 2b displays the estimated post-

merger percent change in WTP. Smin is plotted on a log scale. The left axis indicates the

estimated value of the statistic, while the right axis indicates the result scaled by the value of

the statistic for a minimum group size of 25, the value selected by the RMSE cross-validation

approach. For both figures, the shaded region indicates 95% confidence intervals based upon

bootstrapped standard errors from 50,000 draws.

Overall, these results suggest that the statistics of interest are relatively insensitive across

a range of values for Smin in the neighborhood of 25. For a minimum group size between

5 and 500, the diversion ratio is within 4% of the value at 25, and the change in WTP is

within 10% of the value at 25. The diversion ratio is less sensitive to the choice of minimum

group size than the willingness to pay measure.

As expected, the use of a more flexible specification generally leads to larger standard

errors for the diversion ratio. However, since fairly precise estimates are obtained even for

small values of Smin, the loss of precision from using a more flexible model appears to be

relatively small. For the change in WTP, the very low Smin specifications also have a fairly

low standard error, because the top code on WTP implies that many groups have a zero

percent change in WTP.

The fraction of patients which are in groups without system choice heterogeneity is only

large when Smin is 3, at 12%. Only 5% of patients are in groups without system choice

17Results for the diversions from System 1 to System 2 are in Table I. Those results are consistent with
our findings.
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heterogeneity when the minimum group size is 5, and 1% are when the minimum group size

is 10. No patients are in such groups for a minimum group size of 25 or above. Thus, so

long as Smin is set to at least 5 patients, groups without system choice heterogeneity do not

seem to be a major issue.

For all of the above results, we have assumed the LAD variable ordering. In Figure 1b,

we conduct cross-validation to confirm that the LAD ordering is appropriate. We examine

all six permutations of the major variable groupings of Location, Admission Type, and

Demographics (i.e., LAD, LDA, ALD, ADL, DLA, and DAL) given a minimum group size

of 25. Reassuringly, we find that LAD is the preferred ordering; the RMSE is similar for

LDA and DLA, but much higher for the other three variable orderings for which location

variables are relatively late in the ordering of characteristics. This cross-validation exercise

thus demonstrates the importance of ordering the characteristics correctly. This ordering can

be set using a combination of prior knowledge about characteristics’ expected importance in

predicting choices together with cross-validation.

4 Monte Carlo Analysis

The results presented in the previous section suggest that estimates of the diversion ratio

and percent change in WTP are relatively robust to the minimum group size, and that the

diversion ratio is more robust than the percent change in WTP. However, it is impossible to

analyze the performance of the semiparametric model from the estimated results since we do

not know the true value for these statistics. In this section, we use the obtained estimates to

calibrate a model where we know the true value for the diversion ratios and WTP, and assess
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whether the semiparametric model can accurately estimate these statistics. In addition, we

examine how well the semiparametric model estimates individual choice probabilities.

4.1 Monte Carlo Approach

We undertake the following Monte Carlo analysis to assess the semiparametric model’s per-

formance in a real-world setting. Admissions are randomly sampled with replacement from

the hospital discharge data employed earlier. For each sampled admission, we randomly

generate a hospital choice using the admission’s predicted choice probabilities from the semi-

parametric model estimated in Section 3.3 for a given choice of minimum group size. This

procedure results in a realistically calibrated data sample for which we know the true prob-

ability that a given patient will select any given hospital, and thus the true diversion ratios

and percent change in WTP.

For various model specifications, we use this data generating process to simulate 50,000

datasets that contain the same number of admissions as the original data. Each simulated

dataset is used to estimate the semiparametric model for a given choice of Smin, as well as

choice probabilities of each system for each individual, the diversion ratio, and the percent

change in WTP.18 For the diversion ratio and change in WTP, we then report the RMSE of

the percent difference between each estimated statistic and its true value across the Monte

Carlo simulations. For the individual choice probabilities, we report the absolute value of

the RMSE. Since we employ a large number of simulations, the estimated RMSE should

accurately represent the magnitude of the semiparametric estimator’s RMSE.

18Since we find very similar patterns for the choice probabilities of each system, we depict only the RMSE
for the choice probabilities of System 1.
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4.2 Different Group Sizes

We start with the true model calibrated based on the Smin = 50 specification. For all of the

Monte Carlo simulations with different group sizes, we assume that the variable ordering is

LAD for both the true model and all simulated datasets.

Figure 3 displays the RMSE for the diversion ratio, percent change in WTP, and choice

probabilities of System 1 for different values of Smin. For the diversion ratio, the RMSE is

still fairly low for very flexible models, with only small changes before a minimum group

size of 250, but does increase considerably for sufficiently inflexible models. The percent

change in WTP and choice probability of System 1 exhibit a U shape, with higher RMSE

for very low and very high values of Smin. Intuitively, estimates are biased for very inflexible

models, while estimates for very flexible models both have high variance, as well as bias due

to groups without heterogeneity for the percent change in WTP. For both the diversion ratio

and percent change in WTP, the RMSE is at its lowest when Smin is 100, while for the choice

probability, the RMSE is at its lowest at the true value for Smin of 50.

However, all values of Smin below 500 have an RMSE less than 1.5% for the diversion

ratio, and all values between 3 and 500 have an RMSE below 8% for the percent change in

WTP. The RMSE for individual choice probabilities is below 10% for group sizes between 10

and 1,000, compared to an RMSE of 4.7% at the true group size of 50. Thus, errors may be

fairly small so long as Smin is set within an intermediate range, although the percent change

in WTP has a significantly higher error rate than the diversion ratio and the individual

choice probabilities have a greater error rate than the other two metrics.

When patient heterogeneity is sufficiently prevalent, it may not be possible to choose a
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(a) Diversion Ratio (b) Percent Change in WTP

(c) Choice Probability

Figure 3 Estimated RMSE by Smin, When True Value of Smin is 50

Note: Diversion ratio is from System 2 to System 1. Choice Probability is for System 1. Table II
presents these estimates numerically.
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value for the minimum group size that is both large enough to avoid the variance associated

with small groups but small enough to avoid bias from being insufficiently flexible. To

examine this issue, we consider the results of a Monte Carlo analysis in which the data

generating process corresponds to the Smin = 3 calibration.

The results from this analysis are displayed in Figure 4. In this case, the RMSE for both

the diversion ratio and change in WTP has two local minima, at a minimum group size of 3

and 500, with the global minimum at 500. Again, the RMSE for the diversion ratio is fairly

flat below a minimum group size of 1,000, with the RMSE below 3.5% for all values between

3 and 1,000. The RMSE for the percent change in WTP is less stable. It is below 15%

for Smin between 3 and 5,000, although it is much lower, at 1.33%, at the minimum point

of 500. These results suggest that, even if one is concerned that patients may have very

heterogeneous hospital preferences, one may not need to use extremely flexible specifications

to avoid a high degree of error. The choice of Smin appears to be more important for the

percent change of WTP than for the diversion ratio.

For the individual choice probability, the RMSE is lowest at a minimum group size of

5 and steadily increases after that value, rising from 14.2% at 5 to 20.0% at 1,000. Thus,

for the estimation of individual choice probabilities, it may be more important to set the

minimum group size accurately.

Next, we analyze the efficiency loss from using a semiparametric model. The use of a

properly specified parametric logit model will generally provide more precise estimates than

the semiparametric model. The degree of inefficiency will depend on the functional form of

the parametric specification. The semiparametric estimator is particularly inefficient when

the true model has a simple, known parameterization. We consider a Monte Carlo analysis
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(a) Diversion Ratio (b) Percent Change in WTP

(c) Choice Probability

Figure 4 Estimated RMSE by Smin, When True Value of Smin is 3

Note: Diversion ratio is from System 2 to System 1. Choice Probability is for System 1. Table III
presents these estimates numerically.

27



where the data generating process is a particularly simple specification to gain a better

understanding of the “worst case” scenario for the semiparametric model. First, we use the

dataset employed earlier to estimate a parametric logit model that controls only for travel

time, its square, and a set of hospital fixed effects. We predict choice probabilities for each

patient from the model estimates, which are then used to generate new hospital choices for

admissions that are randomly sampled with replacement from the data.

The results from this analysis are presented in Figure 5. We again see a U shaped curve

for the RMSE for the percent change in WTP, and a flat RMSE that only rises with high

values of Smin for the diversion ratio. The RMSE is at its lowest when the minimum group

size is 50 for the diversion ratio, and 100 for the percent change in WTP. The RMSE is

approximately 1% or less for the diversion ratio for all values of Smin below 250. For the

percent change in WTP, the RMSE is 3.5% or below for Smin between 25 and 500.

We also estimate the RMSE when the model is estimated using the correctly specified

simple parametric logit.19 The RMSE of the parametric logit is 0.5% for the diversion

ratio and 0.8% for the percent change in WTP; the RMSE for the semiparametric logit

is very close to the RMSE for the parametric logit for intermediate values of Smin. Thus,

the efficiency loss from using a semiparametric model is low so long as the minimum group

size is set within an intermediate range. This analysis considers the performance of the

semiparametric model when the true model is an extremely simple parametric alternative.

In a realistic setting where the data generating process is more complex, the inefficiency from

using a semiparametric estimator is presumably smaller.

19Due to the much higher computation burden, we employ only 1,000 simulations, rather than the 50,000
used for the semiparametric model.
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(a) Diversion Ratio (b) Percent Change in WTP

(c) Choice Probability

Figure 5 Estimated RMSE by Smin, When True Model is Parametric Logit

Note: Diversion ratio is from System 2 to System 1. Choice Probability is for System 1. Table IV
presents these estimates numerically.
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For the individual choice probabilities, the RMSE has a U shaped pattern with a minimum

of 2.3% for a minimum group size of 250. However, the RMSE is below 10% for Smin between

10 and 25,000. Thus, for estimating individual choice probabilities, the semiparametric model

is more sensitive to the choice of minimum group size, but the increase in RMSE for values

of Smin within an intermediate range of values is moderate.

4.3 Different Grouping Order

In contrast to the choice of the minimum group size, the performance of the semiparametric

model is sensitive to the order of the grouping variables. Given that we use nine grouping

variables (see Table 3.1), there are a large number of alternative ways to group the variables.

We thus examine all six ways to group the broader subheadings of Location (L), Admission

Type (A), and Demographics (D), and compare these to a true order in which the order is

Location first, then Admission Type, then Demographics, as in Table 3.1, and the true Smin

is either 50 or 3. Within each of these, we keep constant the ordering of the covariates within

each of the broad groupings.20

The results from this analysis for each statistic for a true Smin of 50 are presented in

Figure 6. The RMSE is fairly low for the true LAD order, as well as for DLA and LDA

orders, but is an order of magnitude higher for the other three orders. It appears to be crucial

for the grouping to place Location variables either first or relatively early in the ordering; the

orderings that do badly either place Location last or, for ALD, second with several different

variables before the Location variables. Since both the Location and Admission variables

are high dimension, it is difficult to control for both when Smin is high. By contrast, the

20For computational reasons, we only include 5,000 simulations for estimates varying the grouping order.
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Demographic variables are low dimension, so the performance of the algorithm is much less

affected if Demographic variables come before Location variables. We find a similar pattern

for choice probabilities for System 1. Thus, the semiparametric model does require some

knowledge of the appropriate grouping variables to function well.

These statistics are significantly less sensitive to the choice of grouping variables when

Smin is small. Figure 7 depicts the differences in RMSE for all of our statistics for all six

orders for a Smin of 3. For both the diversion ratio and change in WTP, the true LAD order

continues to have the lowest RMSE and the difference between the RMSE for the worst

order and the true LAD order falls by slightly more than half compared to a true Smin of

50. For the choice probability of System 1, while the true LAD order does have the lowest

RMSE, the difference between the RMSE for the worst order and the true LAD order falls

by half compared to a true Smin of 50. This fall is intuitive. Because a smaller Smin size

builds groups based on a larger number of variables, the order of the variables matters less.

Thus, misspecification of the variable ordering matters less when Smin is small.

In addition, the optimal Smin is lower when the variable ordering is misspecified. In order

to illustrate how the error from misspecifying the variable ordering changes as we lower the

minimum group size, we set the minimum group size to 3 when the true value is 50 and

then examine the performance of each variable ordering.21 Figure 8 displays the results from

this simulation. The differences in RMSE across the different orderings are much smaller;

for the diversion ratio, the worst orderings have a RMSE of 13%, compared to an RMSE of

39% if estimated under the true minimum group size. Similarly, the RMSE for the percent

21We have also examined the lowest RMSE across all possible values of Smin for each variable ordering.
For the diversion ratio and percent change in WTP, the lowest RMSE across Smin values is similar to the
case where Smin is 3, except for the true LAD ordering. For the individual choice probabilities, the lowest
RMSE across Smin values is similar to the case where Smin is set to the true value of 50.
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(a) Diversion Ratio (b) Percent Change in WTP

(c) Choice Probability

Figure 6 Estimated RMSE by Order of Grouping Variables, Smin = 50

Note: Diversion ratio is from System 2 to System 1. The true minimum group size is 50. Choice
Probability is for System 1. The x axis provides the group order, with L representing Patient
Location variables, A Admission Type variables, and D Patient Demographic variables as described
in Table 3.1. Table V presents these estimates numerically.

32



(a) Diversion Ratio (b) Percent Change in WTP

(c) Choice Probability

Figure 7 Estimated RMSE by Order of Grouping Variables, Smin = 3

Note: Diversion ratio is from System 2 to System 1. The true minimum group size is 3. The x
axis provides the group order, with L representing Patient Location variables, A Admission Type
variables, and D Patient Demographic variables as described in Table 3.1. Table VI presents these
estimates numerically.

33



(a) Diversion Ratio (b) Percent Change in WTP

(c) Choice Probability

Figure 8 Estimated RMSE by Order of Grouping Variables Under Smin = 3 When the True
Smin = 50

Note: Diversion ratio is from System 2 to System 1. Choice Probability is for System 1. The x
axis provides the group order, with L representing Patient Location variables, A Admission Type
variables, and D Patient Demographic variables as described in Table 3.1. Table VII presents these
estimates numerically.
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change in WTP is less than 8% under the worst ordering, much lower than the 48% when

estimated under the true minimum group size of 50. Thus, a smaller value of Smin can

partially compensate for an incorrect grouping order.

4.4 Different Sample Size

We conclude by considering the performance of the model for different sample sizes. We

generate data samples between 5 percent and 100 percent of the original sample size of

124,237. In this Monte Carlo analysis, we estimate a correctly specified model where the

data generating process corresponds to the Smin = 50 specification. The Monte Carlo results

presented in Figure 9 suggest that the semiparametric model performs relatively well even

when the number of admissions is quite small. The RMSE does rise as the sample size

shrinks, but the RMSE is below 4% when the sample size is at or above 10% of the original

for the diversion ratio, below 6% for the percent change in WTP, and below 10% for the

choice probability of System 1.

These results suggest that the semiparametric model can be usefully applied in a wide

range of settings, even when the dataset contains a small number of observations. One reason

why the semiparametric model performs relatively well even for small sample sizes is that the

iterative grouping procedure automatically adjusts model flexibility to the size of the data

sample. For a fixed value for the minimum group size Smin, the grouping procedure puts

patients into a smaller number of groups when the sample size is smaller, which highlights

an advantage of our approach over a standard frequency estimator. This avoids potential

biases associated with using very small group sizes in the semiparametric model, although
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(a) Diversion Ratio (b) Percent Change in WTP

(c) Choice Probability

Figure 9 Estimated RMSE by Sample Size

Note: Diversion ratio is from System 2 to System 1. The true minimum group size is 50. Choice
Probability is for System 1. The x axis is the fraction of the overall sample size. Table VIII presents
these estimates numerically.
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it can lead to bias from model inflexibility if the sample size becomes too small.

5 Conclusion

When presented with rich microdata, researchers must balance the competing objectives of

allowing for significant individual level heterogeneity while ensuring statistical power. In the

parametric logit models that are typically used, the extent of the permitted heterogeneity

is limited by the parametric specification of the model. To complement these methods,

we developed a semiparametric discrete choice estimator that allows for rich heterogeneity

across the population. Highlighting the importance of allowing for such heterogeneity in

choice patterns, Raval et al. (2015) find that our proposed estimator outperforms many

parametric multinomial choice models previously used in the literature in predicting choices

after a change in the choice set.

In our estimator, the trade-off between heterogeneity and power is determined by a single

tuning parameter, the minimum group size. We applied our semiparametric method to pa-

tient discharge data and simulated a merger of two hospital systems to test the estimators’

sensitivity to this parameter. While we suggested a possible cross-validation approach to

choosing this parameter, we found that the main substitution measures are relatively insen-

sitive to the choice of minimum group size. Of the two measures, the change in willingness to

pay was more sensitive than the diversion ratio to the choice of minimum group size, while

individual choice probabilities were more sensitive to the choice of minimum group size than

both substitution measures. The performance of the semiparametric approach was, however,

sensitive to the order of the grouping variables.
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These results should give researchers confidence to pursue this approach in health care

as well as other settings where rich microdata are available. Further, they should encourage

research in other methods that relax the functional form restrictions that underlie most

empirical work in discrete choice demand modeling. The increased availability of large

datasets and recent research in “machine learning” approaches suggest that advances in this

area may be on the horizon.
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Table V Monte Carlo Results Varying Variable Ordering, LAD and Minimum Group Size of 50
Patients is the True Model

LAD ADL DLA LDA ALD DAL

Diversion, System 2 to 1 Avg estimate 43.45% 26.53% 42.32% 42.70% 30.65% 26.43%

Avg % Error 0.23% -38.81% -2.39% -1.51% -29.30% -39.03%

SD of estimate 0.36% 0.20% 0.33% 0.33% 0.25% 0.20%

SD of % Error 0.83% 0.46% 0.77% 0.76% 0.57% 0.45%

RMSE, absolute error 0.37% 16.83% 1.09% 0.73% 12.71% 16.92%

RMSE, % error 0.86% 38.81% 2.51% 1.69% 29.31% 39.03%

WTP, post-merger % chng Avg estimate 18.56% 9.51% 17.39% 17.59% 11.79% 9.45%

Avg % Error 1.63% -47.91% -4.79% -3.70% -35.42% -48.24%

SD of estimate 0.28% 0.11% 0.24% 0.23% 0.16% 0.11%

SD of % Error 1.56% 0.61% 1.30% 1.28% 0.86% 0.60%

RMSE, absolute error 0.41% 8.75% 0.91% 0.72% 6.47% 8.81%

RMSE, % error 2.25% 47.92% 4.96% 3.92% 35.43% 48.25%

Choice Probability, System 1 Mean absolute value of bias 1.21% 11.11% 3.56% 3.19% 9.91% 11.19%

SD of estimate 3.77% 3.79% 3.65% 3.70% 3.61% 3.31%

RMSE, absolute error 5.03% 14.85% 7.01% 6.70% 13.74% 14.81%

Choice Probability, System 2 Mean absolute value of bias 0.59% 7.49% 2.24% 1.97% 6.73% 7.54%

SD of estimate 2.13% 2.50% 2.13% 2.13% 2.35% 2.13%

RMSE, absolute error 3.28% 11.55% 5.31% 4.97% 10.66% 11.52%

Notes: Each column reports results from a different Monte Carlo specification consisting of 5,000 simulations.
A random sample of 124,237 admissions is generated for each simulation. The hospital choice for each admission
is randomly generated based on estimates from the model reported in Table I for a minimum group size of
50 patients and a variable ordering of LAD. Each simulated dataset is used to estimate the semiparametric
model for a minimum group size of 50 and the indicated variable ordering. We examine 6 orderings varying
the order of Location (L), Admission Type (A), and Demographics (D) variables, as in Table 3.1.
% of estimate is the average of the statistic (i.e., % change in WTP or diversion ratio) across simulations
divided by the true value of the statistic in the data. SD of % error is the standard deviation of the statistic
across simulations divided by the true value of the statistic in the data. RMSE, % error is the root mean
squared error of the statistic, computed across simulations, also divided by the true value of the statistic in
the data. The mean absolute value of bias is the average of the absolute value of the biases from estimates of
individuals’ choice probabilities. The reported RMSE for individual choice probabilities is the square root of
the average MSE from individuals’ choice probabilities.
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Table VI Monte Carlo Results Varying Variable Ordering, LAD and Minimum Group Size of 3
Patients is the True Model

LAD ADL DLA LDA ALD DAL

Diversion, System 2 to 1 Avg estimate 42.50% 36.81% 42.47% 42.46% 39.22% 36.70%

Avg % Error 0.14% -13.26% 0.07% 0.06% -7.59% -13.51%

SD of estimate 0.52% 0.48% 0.52% 0.52% 0.47% 0.46%

SD of % Error 1.22% 1.12% 1.22% 1.23% 1.11% 1.09%

RMSE, absolute error 0.52% 5.65% 0.52% 0.52% 3.25% 5.75%

RMSE, % error 1.23% 13.31% 1.23% 1.23% 7.67% 13.56%

WTP, post-merger % chng Avg estimate 15.88% 14.49% 16.05% 16.05% 14.82% 14.41%

Avg % Error -8.81% -16.83% -7.83% -7.85% -14.89% -17.27%

SD of estimate 0.28% 0.26% 0.27% 0.28% 0.26% 0.26%

SD of % Error 1.59% 1.52% 1.57% 1.59% 1.50% 1.51%

RMSE, absolute error 1.56% 2.94% 1.39% 1.40% 2.61% 3.02%

RMSE, % error 8.95% 16.90% 7.98% 8.01% 14.96% 17.34%

Choice Probability, System 1 Mean absolute value of bias 3.40% 5.51% 3.84% 3.83% 4.77% 5.73%

SD of estimate 11.32% 13.45% 12.09% 12.08% 12.61% 13.24%

RMSE, absolute error 15.65% 18.15% 16.49% 16.49% 17.23% 18.10%

Choice Probability, System 2 Mean absolute value of bias 1.98% 3.68% 2.23% 2.22% 3.19% 3.83%

SD of estimate 6.11% 8.25% 6.66% 6.65% 7.52% 8.08%

RMSE, absolute error 11.12% 13.41% 11.71% 11.71% 12.75% 13.39%

Notes: Each column reports results from a different Monte Carlo specification consisting of 5,000 simulations.
A random sample of 124,237 admissions is generated for each simulation. The hospital choice for each admission
is randomly generated based on estimates from the model reported in Table I for a minimum group size of 3
patients and a variable ordering of LAD. Each simulated dataset is used to estimate the semiparametric model
for a minimum group size of 3 and the indicated variable ordering. We examine 6 orderings varying the order
of Location (L), Admission Type (A), and Demographics (D) variables, as in Table 3.1.
% of estimate is the average of the statistic (i.e., % change in WTP or diversion ratio) across simulations
divided by the true value of the statistic in the data. SD of % error is the standard deviation of the statistic
across simulations divided by the true value of the statistic in the data. RMSE, % error is the root mean
squared error of the statistic, computed across simulations, also divided by the true value of the statistic in
the data. The mean absolute value of bias is the average of the absolute value of the biases from estimates of
individuals’ choice probabilities. The reported RMSE for individual choice probabilities is the square root of
the average MSE from individuals’ choice probabilities.
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Table VII Monte Carlo Results Varying Group Ordering Under Minimum Group Size of 3,
LAD and Minimum Group Size of 50 Patients is the True Model

LAD ADL DLA LDA ALD DAL

Diversion, System 2 to 1 Avg estimate 43.01% 37.84% 43.00% 42.99% 40.07% 37.73%

Avg % Error -0.80% -12.72% -0.81% -0.83% -7.57% -12.96%

SD of estimate 0.46% 0.42% 0.47% 0.48% 0.43% 0.41%

SD of % Error 1.07% 0.98% 1.09% 1.11% 0.99% 0.96%

RMSE, absolute error 0.58% 5.53% 0.59% 0.60% 3.31% 5.64%

RMSE, % error 1.34% 12.76% 1.36% 1.39% 7.63% 13.00%

WTP, post-merger % chng Avg estimate 19.15% 17.06% 19.22% 19.21% 17.76% 16.97%

Avg % Error 4.87% -6.59% 5.24% 5.20% -2.76% -7.07%

SD of estimate 0.30% 0.28% 0.30% 0.30% 0.28% 0.28%

SD of % Error 1.66% 1.54% 1.63% 1.64% 1.53% 1.51%

RMSE, absolute error 0.94% 1.24% 1.00% 1.00% 0.58% 1.32%

RMSE, % error 5.14% 6.77% 5.49% 5.45% 3.15% 7.23%

Choice Probability, System 1 Mean absolute value of bias 0.26% 3.27% 0.38% 0.38% 2.38% 3.42%

SD of estimate 13.13% 14.75% 13.74% 13.74% 14.01% 14.45%

RMSE, absolute error 15.08% 17.17% 15.74% 15.74% 16.28% 16.94%

Choice Probability, System 2 Mean absolute value of bias 0.15% 2.47% 0.23% 0.22% 1.88% 2.57%

SD of estimate 7.72% 9.47% 8.13% 8.13% 8.75% 9.26%

RMSE, absolute error 10.58% 12.53% 11.07% 11.07% 11.86% 12.38%

Notes: Each column reports results from a different Monte Carlo specification consisting of 5,000 simulations.
A random sample of 124,237 admissions is generated for each simulation. The hospital choice for each
admission is randomly generated based on estimates from the model reported in Table I for a minimum
group size of 50 patients and a variable ordering of LAD. Each simulated dataset is used to estimate the
semiparametric model using the indicated variable ordering, although the minimum group size is set to 3 and
not the true value of 50. We examine 6 orderings varying the order of Location (L), Admission Type (A),
and Demographics (D) variables, as in Table 3.1.
% of estimate is the average of the statistic (i.e., % change in WTP or diversion ratio) across simulations
divided by the true value of the statistic in the data. SD of % error is the standard deviation of the statistic
across simulations divided by the true value of the statistic in the data. RMSE, % error is the root mean
squared error of the statistic, computed across simulations, also divided by the true value of the statistic in
the data. The mean absolute value of bias is the average of the absolute value of the biases from estimates of
individuals’ choice probabilities. The reported RMSE for individual choice probabilities is the square root of
the average MSE from individuals’ choice probabilities.
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Table VIII Monte Carlo Results, Alternative Sample Sizes

5% 10% 25% 50% 75% 100%

Diversion, System 2 to 1 Avg estimate 41.04% 42.07% 43.09% 43.37% 43.41% 43.42%

Avg % Error -5.35% -2.96% -0.60% 0.04% 0.13% 0.15%

SD of estimate 1.27% 0.95% 0.65% 0.49% 0.42% 0.37%

SD of % Error 2.94% 2.20% 1.49% 1.12% 0.96% 0.85%

RMSE, absolute error 2.64% 1.60% 0.70% 0.49% 0.42% 0.37%

RMSE, % error 6.10% 3.69% 1.61% 1.12% 0.97% 0.86%

WTP, post-merger % chng Avg estimate 16.88% 17.41% 17.99% 18.30% 18.52% 18.63%

Avg % Error -7.58% -4.70% -1.51% 0.18% 1.38% 2.01%

SD of estimate 0.89% 0.67% 0.46% 0.36% 0.32% 0.29%

SD of % Error 4.89% 3.64% 2.54% 2.00% 1.77% 1.59%

RMSE, absolute error 1.65% 1.09% 0.54% 0.37% 0.41% 0.47%

RMSE, % error 9.02% 5.95% 2.96% 2.00% 2.25% 2.57%

Choice Probability, System 1 Mean absolute value of bias 6.54% 5.65% 4.18% 3.22% 1.94% 0.64%

SD of estimate 3.85% 3.65% 3.60% 3.77% 3.93% 3.87%

RMSE, absolute error 10.15% 9.12% 7.85% 6.96% 5.89% 4.67%

Choice Probability, System 2 Mean absolute value of bias 4.12% 3.34% 2.41% 1.77% 1.11% 0.34%

SD of estimate 2.27% 2.13% 2.04% 2.16% 2.25% 2.20%

RMSE, absolute error 7.95% 6.89% 5.53% 4.70% 3.99% 3.14%

Notes: Each column reports results from a different Monte Carlo specification consisting of 50,000 simula-
tions. A random sample with the indicated number of observations is generated for each simulation. The
hospital choice for each admission is randomly generated based on estimates from the model reported in
Table I for a minimum group size of 50 patients and a variable ordering of LAD. Each simulated dataset is
used to estimate the semiparametric model for the indicated minimum group size and a variable ordering of
LAD.
% of estimate is the average of the statistic (i.e., % change in WTP or diversion ratio) across simulations
divided by true value of the statistic in the data. SD of % error is the standard deviation of the statistic
across simulations divided by the true value of the statistic in the data. RMSE, % error is the root mean
squared error of the statistic, computed across simulations, also divided by the true value of the statistic in
the data. The mean absolute value of bias is the average of the absolute value of the biases from estimates
of individuals’ choice probabilities. The reported RMSE for individual choice probabilities is the square root
of the average MSE from individuals’ choice probabilities.
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A Bias-Variance Tradeoffs with Smin

In this section, we consider the bias-variance tradeoffs involved in setting the minimum group

size, Smin, when the semiparametric logit specification is used to estimate diversion and WTP.

Starting with a correctly specified model, we first analyze the bias from combining two groups

with heterogeneous preferences. We then consider the opposite situation in which the model is

unnecessarily flexible.

We start by assuming that the semiparametric model is correctly specified. The overall diversion

from hospital h to hospital j across two groups A and B is a weighted average of the group-level

diversions where the weight is Ng
h , the number of patients in group g that select hospital h.

divhj = (NA
h div

A
hj +NB

h div
B
hj)/(N

A
h +NB

h ). (11)

Suppose that the two groups are combined due to the (mistaken) belief that they have the same

hospital preferences. The estimated diversion ˆdivhj from hospital h to j for the combined group is

simply the estimated fraction of patients in A and B, after excluding those who choose hospital h,

which selects hospital j. The expected value of this estimator does not equal the actual diversion

divhj defined in equation (11):

E( ˆdivhj) = (NA
∼hdiv

A
hj +NB

∼hdiv
B
hj)/(N

A
∼h +NB

∼h). (12)

The expected value of the estimated diversion from hospital h to j for the combined group is still a

weighted average of the group-level diversions, but now the weight is Ng
∼h, the number of patients

in group g that do not select hospital h. The estimated diversion for the combined group will be

unbiased only in special cases. For example, unbiased estimates are obtained when the fraction of

each group that selects hospital h is the same (i.e.
NA

h

NA
∼h

=
NB

h

NB
∼h

) , or when the group-level diversions

are identical, so the weighting difference does not matter (i.e., divAhj = divBhj). In general, however,

the use of an overly restrictive model leads to biased diversion estimates.

Next, consider the potential bias from using an overly flexible model. We start with the as-

sumption that each member of group g has identical preferences, and then divide this homogeneous

group into two subgroups A and B. The estimated diversion from hospital h to j across the two

groups is as follows:

ˆdivhj = (NA
h

ˆdiv
A

hj +NB
h

ˆdiv
B

hj)/(N
A
h +NB

h ). (13)

Since all members of the two subgroups have the same preferences, E( ˆdivhj) = E( ˆdiv
A

hj) =

E( ˆdiv
B

hj) = divhj . That is, the estimated diversion across the two groups is an unbiased esti-

mate of the true diversion. There is a caveat, however: one must be able to estimate the diversion

from hospital h to j for each subgroup. This is not possible when a group is composed solely of

individuals that select hospital h.
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However, diversion ratios will be less precisely estimated. Returning to the example where a

homogeneous group is divided into two subgroups A and B, let αh denote the fraction of patients,

among those who choose hospital h, that are put into group A. Similarly, let α∼h denote the

fraction of those who do not choose hospital h that are put into group A. The variance of the

estimated diversion ˆdivhj defined in equation (13) is as follows:

V ( ˆdivhj) = φh
divhj(1− divhj)

N∼h
. (14)

where φh =
α2
h

α∼h
+ (1−αh)2

1−α∼h
. When φh = 1, the variance of the estimated diversion calculated

separately for each group equals the variance of the estimated diversion when it is calculated for

the combined group. Holding α∼h fixed, φh is a convex function of αh that has a minimum at

αh = α∼h, at which point φh = 1. That is, the only time that there is no efficiency loss from

dividing a homogeneous group into two subgroups is when those selecting hospital h and those

selecting other hospitals are allocated to the two groups in similar proportions. While this condition

may approximately hold when a large group is divided, it is less likely to hold when group sizes are

small due to random sampling. Thus, the efficiency cost from dividing a large group into medium

sized groups is likely to be less than the loss in efficiency from dividing a medium sized group into

small groups.

The use of an overly flexible model also affects WTP estimates. As before, we start with a

single group with homogeneous preferences. The group’s estimated WTP (per person) for hospital

h is as follows:

ˆWTP
g
h = − ln(1− ŝgh). (15)

Next, we divide the group into two. The average WTP (per person) for hospital h across the two

groups is estimated as follows:

ˆWTP h = −[NA ln(1− ŝAh ) +NB ln(1− ŝBh )]/(NA +NB). (16)

Both equation (15) and equation (16) provide consistent estimates of the true WTP for the group,

although the estimates will not be unbiased since WTP is a nonlinear function. However, the use

of a more flexible model can have a significant impact in finite samples. Since WTP is a convex

function, and ŝh = (NAŝAh +NB ŝBh )/(NA +NB), the WTP estimate from equation (16) is weakly

larger than the WTP estimate using equation (15). This can lead to an inference problem where

it is unclear whether estimated WTP is high because patients strongly value a given hospital, or

because an overly flexible model is being employed.

For the change in WTP, both the numerator – the WTP of the combined system – and denom-

inator – the WTP of each individual system – increase with a more flexible model. Thus, the effect

of changing the group size on the change in WTP is ambiguous.
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