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Abstract

Researchers have found that machine learning methods are typically better at pre-
diction than econometric models when the choice environment is stable. We study
hospital demand models, and evaluate the relative performance of machine learning
algorithms when the choice environment changes substantially due to natural disasters
that closed previously available hospitals. While machine learning algorithms outper-
form traditional econometric models in prediction, the gain they provide shrinks when
patients’ choice sets are more profoundly affected. We show that traditional economet-
ric methods provide important additional information when there are major changes
in the choice environment.
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1 Introduction

The proliferation of rich consumer-level datasets has led to the rise of the “algorithmic

modeling culture” (Breiman, 2001b), wherein analysts treat the statistical model as a “black

box” and predict choices using algorithms trained on existing datasets. Agrawal et al.

(2018) predict that reductions in the cost of prediction due to the increasing adoption of

machine learning models will revolutionize how businesses address the problems they face.

The excitement about new AI methods is, in part, due to the belief that they provide better

predictive accuracy than traditional econometric methods.

However, evaluating health policy questions often involves contemplating a substantial

shift in the choice environment. For example, a health insurance reform may change the

set of insurance products that consumers can buy and provider entry and exit alters the

set of products available to patients. For such questions, it is less obvious whether purely

data-driven machine learning methods can usefully be applied, compared to models that

incorporate domain knowledge through economic assumptions. As Athey (2017) remarks:

[M]uch less attention has been paid to the limitations of pure prediction methods.

When SML [supervised machine learning] applications are used “off the shelf”

without understanding the underlying assumptions or ensuring that conditions

like stability [of the environment] are met, then the validity and usefulness of the

conclusions can be compromised.

In this paper, we use a major change in the choice environment to compare the per-

formance of an econometric hospital demand model to machine learning models. Hospital

demand models are widely used for evaluating counterfactual changes in choice sets in hos-

pital mergers (Capps et al., 2003; Farrell et al., 2011; Gowrisankaran et al., 2015; Gaynor

et al., 2015), insurance mergers (Ho and Lee, 2019), and narrow insurance networks (Ghili,

2016; Ho and Lee, 2019). To gauge the different models’ performance, we use a set of natu-

ral disasters that closed one or more hospitals but left the majority of the surrounding area

relatively undisturbed. These “shocks” exogenously altered consumers’ choice sets, creat-

ing a benchmark – patients’ actual choices in the post-disaster period – against which to
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assess the performance of different predictive models calibrated on pre-disaster data. Our

main prediction criterion is the fraction of actual choices that we correctly predict using the

highest estimated probability as the predicted choice. By comparing the different models’

predictions to actual post-disaster choices, we are able to gauge predictive performance when

the choice environment has changed.

Relative to a benchmark econometric choice model akin to those used in recent academic

work (Ho, 2006; Gowrisankaran et al., 2015), we consider the performance of ML models

that are heavily used by practitioners (Athey and Imbens, 2019) and that are currently im-

plemented in standard software packages. In particular, we compare examples of two classes

of machine learning algorithms – grouping and regularization. Grouping models partition

the space of patients into types and estimate choice probabilities separately for each type. In

this category, we evaluate an “exogenous” grouping model based upon Raval et al. (2017),

an individual decision tree model, and two methods, random forests and gradient boosted

trees, that are known to improve prediction performance by aggregating over multiple trees.

Regularization models involve building a “punishment” term into the objective function that

leads to the exclusion of variables that add relatively little new information. In this cate-

gory, we focus attention on a regularized version of a multinomial logit model that selects

the variables most relevant for predicting hospital choices.

We find that the gradient boosting and random forest methods estimated on pre-disaster

data generally outperform all other approaches at predicting patient choice after a disaster

has closed a hospital. Averaging across all six experiments, the random forest, gradient

boosting, and regularization models all correctly predict 46% of choices. By contrast, the

benchmark econometric model correctly predicts 40% of choices, while assigning all choices

to the highest share hospital in the destroyed hospital’s service area correctly predicts 29%

of choices. Either the random forest or gradient boosting model is the best predicting model

for all of the experiments, and they are the best two models for four of the six experiments.

While it would be hard to objectively distinguish between the performance of the random

forest and gradient boosting models, we do find a large difference between these best pre-

dicting models in terms of computational time. For our largest dataset, the random forest

takes minutes to run while the gradient boosting model takes several hours. The next best
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model, the regularized logit, takes almost a week for the same dataset.

We further show that the better performance of machine learning models is not driven

by post-disaster changes in patient composition or preferences. Across disasters, the number

of admissions falls by 6 to 14% after the hospital is destroyed, which indicates that some

patients may either delay or decline treatment. However, we find that the different models

perform qualitatively similarly after removing areas that faced more destruction from the

disaster and when restricting our sample to cardiac or pregnancy patients who likely have a

much more limited ability to delay treatment. We also find similar results for patients with

different levels of disease acuity and who have different payers, which further suggests that

our results are robust across different patient populations.

In most situations, an analyst will not have an experiment to use to evaluate model

performance. Instead, they will only be able to gauge accuracy by “holding out” a portion

of their data, and testing how well different models estimated on the remainder of the data

do in predicting outcomes in the hold out sample. We find that predictive accuracy in a

validation sample formed by holding out 20% of the training data provides a good guide for

which models do best at predicting choices after the disasters.

While we consistently find that the machine learning methods perform best at prediction

on average, their relative performance deteriorates for patients who were more likely to have

had a major change in their choice set. We show this by considering patients who were

especially likely to have gone to the destroyed hospital, either because they previously went

there or because we predict a high probability of them going there. On average, the relative

performance of the machine learning methods over the benchmark logit falls for patients

who were more likely to have used the destroyed hospital. For the experiment where the

destroyed hospital had a 50% share of the market pre-disaster, all of the machine learning

models perform worse than our benchmark conditional logit for patients predicted to have

a 50% or greater probability of going to the destroyed hospital.

The machine learning models could perform relatively worse with a larger change in the

choice set for two main reasons. First, a less local, simpler model with less variable estimates

may be required. We test this explanation by varying the minimum node size of the random

forest; with a larger minimum node size, the random forest model is less local. However, we
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find that random forest models that are less local, and use more patients to estimate each

set of probabilities, perform (weakly) worse with a larger change in the choice set.

Second, there may be a greater need to complement the data with the researcher’s prior

domain knowledge on model specification. In our setting, domain knowledge is reflected by

specifying the logit model’s parametric form. The econometric model we estimate imposes

the parametric restriction that any horizontal, spatial differentiation enters through con-

sumers’ travel time to hospitals, as in the canonical model of Hotelling (1929).1 We quantify

the role this domain knowledge may play through an optimal model combination exercise

that allocates weights to different models. We find that the weight on the conditional logit

model rises as we move from using out of sample validation data for which patients see no

change in choice set, to the test sample of post-disaster patients, to subsets of test sample

patients with a high probability of visiting the destroyed hospital.

Overall, our work connects to the literature on hospital competition and how to infer

providers’ substitutability (Gaynor et al., 2015, 2013). Within this literature, it is most

closely related to Raval et al. (2020), which shows that econometric demand models may

often underpredict the aggregate levels of patient substitution (i.e., “diversion ratios”) to

hospitals with the the highest observed substitution following natural disasters. While that

paper studies predictions about diversion ratios among a set of econometric models, this

paper studies predictions about individual choices and compares machine learning models

to econometric models.

Outside of the health literature, our work contributes to the emerging literature in eco-

nomics and quantitative social science on the application of machine learning techniques.

Within this literature, our work is closest to Bajari et al. (2015a,b) and Rose (2016), which

also focus on evaluating the relative performance of machine learning models given a sta-

ble choice environment. These papers consider the out-of-sample performance of machine

learning models relative to econometric models of consumer goods demand and health care

expenditures, respectively. In contrast, our work studies out-of-sample performance when

there are plausibly exogenous changes in the choice environment.

1As Raval and Rosenbaum (forthcoming) discuss, spatially heterogeneous preferences for hospitals can
come both from differences in consumer travel costs and from other preferences correlated with travel time.
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By illustrating how standard machine learning approaches perform in making predictions

following a change in the choice environment, our paper also contributes to the growing

body of work focused on the proper application of machine learning methods to make causal

predictions (Athey, 2017). In contrast to the literature on estimating treatment effects using

machine learning (e.g., Belloni et al., 2014; Wager and Athey, 2018), we do not use the

variation from the policy change in our estimation. Rather, we estimate a model without

using that variation and assess the quality of the models predictions following a change in

the environment. In estimating the model without using variation on the change in the

environment, we more closely mimic the problem that is frequently faced by policy makers

and businesses when making decisions. They need to make decisions where they only have

access to information prior to the change occurring.

The paper proceeds as follows. Section 2 discusses our data and experimental settings.

Then, in Section 3, we describe the different models we test. Section 4 examines the compu-

tational time required for the machine learning algorithms, Section 5 presents the results on

model performance, and Section 6 examines how model performance deteriorates for patients

experiencing a greater change in environment. Finally, we discuss lessons that practitioners

may take from our work and conclude in Section 7.

2 Natural Experiments

2.1 Disasters

We exploit the unexpected closures of six hospitals in four different regions following three

different types of natural disaster. Table 1 below lists the locations of the disasters, when

they took place, the nature of the event, and the hospital(s) affected. Our sample includes

disasters affecting urban markets (New York City and Los Angeles) as well as rural markets,

and elite academic medical centers (NYU Langone) as well as community health centers.

Because of this considerable heterogeneity in the “treated” groups, we have broad confidence

in the external validity of our results.
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Table 1: Natural Disasters

Location Month/Year Severe Weather Hospital(s) Closed

Northridge, CA Jan-94 Earthquake St. John’s Hospital
Americus, GA Mar-07 Tornado Sumter Regional Hospital
New York, NY Oct-12 Superstorm Sandy NYU Langone

Bellevue Hospital Center
Coney Island Hospital

Moore, OK May-13 Tornado Moore Medical Center

2.2 Service Areas and Choice Sets

Like much of the prior literature, we estimate demand for hospitals for those patients seeking

inpatient care using the discharge data collected by state departments of health.2 Such

patient-hospital data have frequently been used by researchers (Capps et al., 2003; Ciliberto

and Dranove, 2006; Garmon, 2017). They include many characteristics describing the patient

receiving care such as age, sex, zip code of residence, and diagnosis.3

To assess the performance of different predictive methods when consumers’ choice sets

change, we first identify the patient population exposed to the loss of a choice. We do this

by constructing the 90% service area for each destroyed hospital using the discharge data.

The service area is defined as the smallest set of zip codes that accounts for at least 90% of

the hospital’s admissions. Because this set may include many zip codes where the hospital

is competitively insignificant, we exclude any zip code where the hospital’s share in the

pre-disaster period is below 4%. We assume that any individual that lived in this service

area and required care at a general acute care hospital would have considered the destroyed

hospital as a possible choice. We define the set of relevant substitute hospitals as those that

have a share of more than 1% of the patients in the 90% service area, as defined above, in

a given month (quarter for the smaller Sumter and Moore datasets). We combine hospitals

not meeting this threshold into an “outside option.”

We estimate the models on data from the period before the disaster, and test them on

2For the most part, we rely on data provided directly from the relevant state agencies. For New York, we
use both data provided by the state agency and discharge data separately obtained from HCUP. The HCUP
data allow us to observe whether a patient had visited the destroyed hospital in the recent past, which we
exploit in Section 6 to examine previous patients of the destroyed hospital.

3Precise details on the construction of our estimation samples are provided in Appendix B.
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admissions taking place after the disaster. We refer to the data from the time period before

the disaster as the “training data” and after the disaster as the “test data.” We exclude the

period immediately surrounding the disaster to avoid including injuries from the disaster

and to ensure that the choice environment resembles the pre-period as much as possible.4

Table 2 displays characteristics of each destroyed hospital’s market environment, includ-

ing the number of admissions before and after the disaster, the share of the service area that

went to the destroyed hospital before the disaster, the number of zipcodes in the service area,

and the number of rival hospitals. We also indicate the average acuity of patients choos-

ing the destroyed hospital during the pre-disaster period, measured by average MS-DRG

weight.5

Table 2 indicates that the service area for Sumter Regional experienced a massive change

from the disaster; the share of the destroyed hospital in the service area was over 50 percent.

For the other disasters, the disruption was smaller though still significant as the share of

the destroyed hospital in the service area ranges from 9 to 18 percent. Thus, the destroyed

hospitals consistently have a large enough share in each service area that patients’ choice

environments are likely to have changed substantially. Table 2 also shows that we have

a substantial number of patient admissions before and after each disaster with which to

estimate and test the different models. The number of admissions in the training and test

datasets ranges from the thousands for Moore and Sumter to tens of thousands for the New

York hospitals and St. John’s.6

4Except for St. Johns, the omitted period is just the the month of the disaster. We describe the specific
periods dropped for each disaster in Appendix B.

5DRG weights are designed to measure the complexity of patients’ treatments, so reporting average
weights are a way of measuring variation in treatment complexity between hospitals and regions.

6The New York service areas do overlap. The service area for NYU is much larger than Bellevue, so
most of the zip codes for Bellevue are also in the service area for NYU, but the reverse is not true. NYU
has a 3.9 percent share in the Coney service area and 9.5 percent share in the Bellevue service area, and
Bellevue has a 5.7 percent share in the NYU service area.
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Table 2: Descriptive Statistics of Affected Hospital Service Areas

Training Data Test Data Zip Choice Set Destroyed Destroyed
Admissions Admissions Codes Size Share Acuity

Sumter 6,940 5,092 11 15 50% 1.02
NYU 79,950 16,696 38 19 9% 1.41
Coney 46,588 9,666 8 17 18% 1.16
Bellevue 46,260 9,152 19 20 11% 1.19
Moore 9,763 3,920 5 12 11% 0.91
St. Johns 97,030 18,130 29 21 17% 1.30

Note: The first column indicates the number of admissions in the (pre-period) training data, the
second column the number of admissions in the (post-period) test data, the third column the number
of zip codes in the service area, the fourth column the number of choices (including the outside
option), the fifth column the share of admissions in the pre-period from the 90% service area that
went to the destroyed hospital, and the sixth column the average DRG weight of admissions to the
destroyed hospital in the training data.

3 Models

Economists have typically modeled hospital demand using a discrete choice framework that

conditions on a patient having chosen to receive inpatient hospital care.7 The econometrician

then presumes that patient i’s utility from receiving care from each relevant hospital h is a

linearly separable combination of a deterministic component based on observable elements

δih and an idiosyncratic shock εih:

uih = δih + εih. (1)

Since the full set of hospitals may be large, as discussed earlier, we normalize some hospitals

to the outside option h = 0, with δi0 = 0 for all patients i. In addition, the hospital choice

literature has generally assumed that εih is distributed Type I extreme value (e.g., Capps et

al., 2003; Gowrisankaran et al., 2015; Ho and Lee, 2019).

Given the linear separability and distributional assumptions, the fundamental question

for the econometrician is how to specify δih. All of the estimation approaches we explore can

be described as different ways of parameterizing δih.

7The assumption is that deferring inpatient care is difficult. We address the impact of violations of this
assumption on our results in Section 5.3.
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3.1 Models of Patient Choice from the Econometric Literature

In the empirical economics literature on hospital choice, economists ex-ante specify models for

deterministic utility δih. Although the models used in the literature vary in what explanatory

terms they include, they make two basic assumptions on consumer choice. First, patients

care about how costly, in terms of travel time, it is for them to receive care at different

hospitals (Hotelling, 1929), which provides a source of horizontal differentiation in hospital

preferences. Second, hospitals are observably vertically differentiated in their appeal to

consumers on quality. Different models may allow for both preferences over travel time, and

hospital quality, to be differentially attractive to different patient types.

These models represent variants of the following general form:

δih =
∑
k

γkhzikαh + f(dih, zik, αh), (2)

where i indexes patient, h indexes hospital, and k indexes patient characteristics. Then,

zik are patient characteristics (e.g., age, condition, location, etc.), αh are hospital indicators

(alternative specific constants, in the language of McFadden et al. (1977)), and dih is the

travel time between the patient’s zip code and the hospital. The function f(dih, zik, αh)

represents distance interacted with patient characteristics and hospital indicators.8 Thus,

the first term includes hospital quality through hospital indicators and allows for heteroge-

nous preferences for hospital quality through interactions between patient characteristics and

hospital indicators. The second term allows for horizontal differentiation through distance

and allows for heterogeneous preferences over the cost of distance through polynomials of

distance interacted with patient characteristics.

In this paper, we focus on one logit model (Logit) that includes interactions of hospital

indicators with disease acuity, major diagnostic category, and travel time as well as interac-

tions of several patient characteristics – disease acuity, race, sex, age, diagnostic category –

with travel time and the square of travel time. This model flexibly accomodates the possi-

bility of heterogeneous preferences over travel time and hospital quality, and has been used

8For travel time, we use ArcGIS to calculate the travel time (including traffic) between the centroid of
the patient’s zip code of residence and each hospital’s address.
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in recent work on this subject (Garmon, 2017).9 We estimate this model via maximum

likelihood. We use the recovered structural parameters and the new choice set to predict

post-disaster choice probabilities.

3.2 Machine Learning Models

We now examine two types of machine learning models: a regularization model and a set of

decision tree models. These models do not impose the economic assumption that consumers

care about the cost of travel time, but allow spatial differentiation in demand by allowing

choice probabilities to vary by zip code. Separately, these models are not necessarily unbiased

or consistent (Athey and Imbens, 2017).

3.2.1 Regularization

In the Logit model described above, the researcher decided which covariates to include. A

machine learning approach to this same problem is to allow an algorithm to select covariates.

We implement a LASSO regression (Tibshirani, 1996) that penalizes the absolute value of

coefficients.10 The parameter estimates recovered by a LASSO model are biased towards 0,

and will not generally be consistent (Hastie et al., 2009, p. 91).

To construct the set of possible explanatory variables for our implementation, we interact

each of the hospital indicator variables with two way interactions between our set of other

predictors. To give an example, one possible explanatory variable would be a specific hospi-

tal’s indicator variable interacted with a zip code interacted with a MDC code. Constructing

variables in this way allows patients from a particular zip code coming into the hospital for

a particular condition such as cardiac conditions or pregnancy to have their own valuation

of hospital quality.11

9Raval et al. (2020) shows that this particular econometric model (called Inter in that paper) performs
better at predicting choices post-disaster compared to several other parametric logit models used in the
literature, such as Capps et al. (2003), Ho (2006), Gowrisankaran et al. (2015), and Garmon (2017). We do
not examine random coefficients logit models as these have not typically been used in the existing literature
on hospital choice, in part because of the availability of individual-level data.

10Formally, − logL(β) + λ
∑K

k=1 |βk| where L(β) is the log likelihood of a multinomial logit model, β are
the coefficients of the model, and λ is a tuning parameter regulating the degree of shrinkage.

11This procedure can generate hundreds or thousands of interactions depending on the dataset. In our
implementation, the estimated model provides non-zero weight for about a thousand such interactions for
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3.2.2 Grouping

An alternative approach to parameterizing δih partitions the space of all patients into a

large set of groups, and then assumes homogeneous preferences within each of those groups.

Deterministic utility is δih = δg(zi)h for some set of groups g(zi) that depend upon patient

characteristics zi. Thus, this approach is analogous to including an indicator variable for each

group-hospital interaction in a multinomial logit model, with the IIA property of proportional

substitution holding with each group.

Given a set of groups, predicted choice probabilities can be estimated as the empirical

shares of hospitals within each group. For some of the approaches we consider, we use the

empirical shares from a single set of groups. For others, we average the shares across different

groupings in order to obtain a choice probability for each hospital.

The first grouping model we consider is a semiparametric bin estimator similar to that

outlined in Raval et al. (2017) (Semipar). For this approach, we place all patients in groups

based on their zip code, disease acuity (DRG weight), age group, and area of diagnosis

(MDC). Any patient in a group above the minimum group size is assigned choice probabilities

based upon the share of patients in that group that go to the various hospitals. For this paper,

we use a minimum group size of 20. We then drop a characteristic, reconstruct groups, and

again compute group-level shares for the full set of patients, both those previously grouped

and those not previously grouped. Because some observations are “re-used,” this will lead

to relatively smaller variance but higher bias than the approach in Raval et al. (2017), which

only used previously non-grouped individuals to compute these choice probabilities. As the

size of the dataset goes to infinity, the bias should go to zero as observations will not be

recycled.

We drop characteristics in the reverse order listed above (i.e., MDC, age group, etc.)

Then, all patients who have not yet been assigned a choice probability and are in groups

above the minimum group size are assigned a choice probability based on that round’s group-

level shares. We continue until all patients are assigned a choice probability or there are no

more covariates to group on.12

St. Johns and NYU, and about 200 for Moore.
12In this last round of grouping, we do not impose a minimum group size restriction. So, for example, if a
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While simple to implement and explain, this method for grouping requires the ex ante

definition of the order of observable characteristics used for prediction. A set of machine

learning models provide algorithmic approaches to allow the data to determine the optimal

groups.

The first grouping machine learning model (DT ) we estimate is a decision tree. While

there are many possible ways of estimating tree models, we employ the popular CART

approach (Breiman et al., 1984). The CART approach separates the data into two groups at

each node based on the split that minimizes the prediction error criterion. Thus, it recursively

partitions the data by growing the tree through successive splits. In order to avoid overfitting

the data by creating too many splits, the tree model is “pruned” by removing excessive splits

that likely contribute little to the out-of-sample performance of the tree. While “pruning”

can address the problem of overfitting, the CART approach is known to have a bias towards

splitting on covariates with many possible splits (Fu and Simonoff, 2015). However, a single

tree will be consistent if the number of nodes is fixed, and the number of observations at

each node goes to infinity (Biau et al., 2008, p. 2016).

While a single decision tree is easy to understand and interpret, the literature has tended

to conclude that approaches which average the predictions of many tree models have much

better predictive power. For example, Breiman (2001b) noted, “While trees rate an A+ on

interpretability, they are good, but not great, predictors. Give them, say, a B on prediction.”

Our second grouping machine learning model (RF ) leverages this insight, injecting random-

ness into the tree construction process to create a “random forest” (Breiman, 2001a; Hastie

et al., 2009). The random forest introduces two sources of randomness into the formation

of trees. First, a whole “forest” of trees are built by estimating different tree models on

bootstrap samples of the original dataset. Second, the set of variables that are considered

for splitting is different and randomly selected for each tree. To compute choice probabilities

for an individual, we average over the group shares relevant to that individual from each

of the trees. The consistency of random forests remains an active area of research (Biau et

zip code only has 10 residents, we compute choice probabilities based upon these 10 people. This approach
is analagous to estimating different multinomial logit models with group-hospital indicator variables for each
level of grouping and assigning choice probabilities to an individual based upon the most refined level of
grouping that exceeds the pre-specified minimum group size.
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al., 2008; Scornet, 2016), but the literature appears to show that many ways of constructing

random forests will be consistent.

Our third grouping machine learning model (GBM ) also derives from decision tree mod-

eling, but uses “gradient boosting” to generate a multiplicity of trees (Freund and Schapire,

1995; Friedman et al., 2000; Friedman, 2001). Gradient boosting builds off of a single un-

derlying tree structure, creating multiple generations of the original model by overweighting

observations that were classified incorrectly in the previous iteration. The final prediction is

then a weighted average across all of the different models produced, where a shrinkage pa-

rameter scales how much each tree adds to the overall prediction.13 Biau et al. (2008) shows

that the process of averaging may transform the underlying, inconsistent decision trees into

a consistent estimator.

3.3 Implementation

For all of the machine learning models, we use the same set of predictor variables: the

patient’s zip code, disease acuity (DRG weight), the Major Diagnosis Category (MDC) of

the patient’s diagnosis, the patient’s age, indicators for medical vs. surgical admission,

whether the patient was black, whether the patient was female, and whether the admission

was on an emergency basis. We estimate all of the machine learning models using the Scikit

package in Python, and set tuning parameters using 3-fold cross-validation. For the three

decision tree methods, the main tuning parameter is the minimum size of the node, which

we cross validate separately for each experiment, testing values of 10, 25, 50, and 100. For

the random forest and gradient boosting methods, we set the number of trees to 5,000. For

the regularization model, the main tuning parameter is the shrinkage parameter λ. All other

parameters are set to their default values in Python Scikit. For post-disaster predictions, we

estimate probabilities by assuming proportional substitution between the remaining hospitals

based on the individual-level probabilities (due to the IIA property of the logit functional

form).

13In a linear regression, a boosting procedure would overweight observations with large residuals. Boosting
can be thought of as an additive expansion in a set of elementary basis functions (in our case, trees).
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4 Estimation Time

One major consideration when evaluating models is how long they take to run. We provide

the computational time required for each of our algorithms in Table 3. These computations

were done using the Scikit package in Python 3 on a server where the algorithms were

permitted to use up to 40 cores at a time.

We summarize these results for St. Johns, our largest dataset, and Sumter, our smallest;

St. Johns has about 14 times the number of admissions as Sumter. The fastest machine

learning algorithm is the decision tree; it took 1 second to estimate the decision tree for

Sumter and about 14 seconds for St. Johns. Of the machine learning algorithms that

generalize decision trees, RF is by far the fastest. For Sumter it took 39 seconds, while for

St. Johns it took 6 minutes. GBM is two orders of magnitude slower than random forest,

taking 16 hours for St. Johns and 28 minutes for Sumter.14 Finally, Regular is three orders

of magnitude slower than random forest, taking 6 days to run for St. Johns and about 3.4

hours for Sumter.

Table 3: Computational Time by Machine Learning Algorithm

Sumter St Johns NYU Moore Coney Bellevue

DT 1 sec 14 sec 11 sec 3 sec 9 sec 8 sec
RF 39 sec 5.9 min 4.4 min 43 sec 1.9 min 2.1 min

GBM 28.4 min 16.2 hr 12.5 hr 29.6 min 4.2 hr 6.8 hr
Regular 3.4 hr 6.0 days 3.6 days 2.1 hr 22.8 hr 27.6 hr

5 Average Predictive Performance

We estimate all of the models in Section 3 on training data from the period before the

disaster, and assess each model’s predictive performance on test data from the period after

the disaster. Our measure is the share of choices correctly predicted by the models in the

post-disaster test data. We consider a model to predict a choice when the choice probabil-

ity for that choice is higher than for any of the alternatives. Thus, the logit distributional

14The time difference between GBM and RF is likely because the trees in a random forest model can be
constructed in parallel, while the trees in a gradient boosting method are constructed sequentially.
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assumption that generates proportional substitution is not required; our prediction crite-

rion is consistent with any error distribution that does not alter the ordering of predicted

probabilities.15

We first show how well the models perform on an absolute basis and average across the

experiments in Figure 1a.16 We equally weight experiments, not patients. In addition to

the benchmark conditional logit, we also compare the machine learning models to a “naive”

aggregate share model Indic. The Indic model assumes that there is no patient heterogeneity,

and so patient choices are proportional to observed aggregate shares. Thus, under Indic,

everyone in the service area is predicted to go to the highest share hospital.

On average, the aggregate share model predicts 28.6% of choices correctly, while our

baseline econometric model Logit predicts 39.6% of choices correctly. Semipar, the semi-

parametric bin model, predicts 41.4% of choices correctly. The machine learning models do

significantly better – RF and GBM correctly predict 46.4% of choices, Regular 45.6%, and

DT 44% of choices. Thus, our baseline econometric model predicts 11 percentage points more

choices than the aggregate share model, and the best machine learning models 7 percentage

points more choices than our baseline econometric model.

Henceforth, we present the percent improvement in predictive accuracy for all other

models relative to the econometric model Logit. Figure 1b depicts the percent improvement

in the share of correct predictions relative to Logit, averaged over all of the experiments.

GBM and RF perform the best, providing a 20.5% increase in predictive accuracy. Regular

performs 18.8% better than Logit, and so is slightly worse than the two best machine learning

models. These outperform DT and Semipar, which are 15% and 6% better than Logit. Thus,

the two models that build upon an individual decision tree perform the best overall.

We next consider performance at the individual experiment level; in Figure 2, we plot

these results, with RF in red circles, GBM in green triangles, and Regular in blue squares.17

15For the DT model, 538 observations for the Sumter experiment have 100% probabilities to the destroyed
hospital. For these observations, we set probabilities to the average at the zip code - month level for all
other observations. This issue does not affect any other model or DT for any other experiment; we discuss
this further in the conclusion as one potential problem with machine learning models.

16We compute 95% Confidence Intervals based on 500 bootstraps of the test period data, holding the
coefficients of the models estimated on the training (pre-disaster) data constant.

17We exclude Semipar and DT for readability; in Table D-3 and Table D-4 in the Appendix we include
all of the models.
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(a) Absolute (b) Relative to Logit

Figure 1: Predictive Accuracy using Percent Correct – Averaged over all Experiments

Note: The left graph is the average percent correct, averaged over all experiments, while the right
graph is the average percent correct measured relative to the baseline parametric logit model Logit.
Bars represent 95% confidence intervals computed from 500 bootstrap replications. See Table D-1
and Table D-2 for tables of the estimates and confidence intervals used to generate these figures.

The models’ performance varies substantially across disasters. For example, in Sumter,

none of the models perform substantially better than Logit, with RF the best at a 2.2%

improvement. The DT and Semipar models perform worse than Logit. The machine learning

models perform dramatically better for Moore, with RF and Regular having a 63% higher

share of correct predictions. For the other four experiments, RF and GBM perform between

10 to 20% better than Logit, and one of the two is the best model. In general, RF and

GBM consistently improve upon the predictive performance of the best of the standard

econometric specifications, and are the best two models for 4 of the 6 disasters. Except for

Sumter, for which Regular performs significantly worse than Logit, we cannot statistically

reject that the improvement in predictive accuracy is the same for the three best machine

learning models.
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Figure 2: Percent Improvement in Predictive Accuracy using Percent Correct – By Experi-
ment

Note: Percent correct measured relative to the baseline parametric logit model Logit. Bars
represent 95% confidence intervals computed from 500 bootstrap replications. See Table D-3 and
Table D-4 for tables of the estimates and confidence intervals used to generate this figure.

5.1 Validation Sample Performance

In most situations, researchers will not have access to natural experiments like ours in order

to assess models, but could gauge performance based on a validation sample that is similar

to the training sample. We examine whether performance on a validation sample can provide

a good guide to performance after a major change in the choice set by estimating the models

on a random 80% sample of the training data (the “train” sample) and then examining their

performance on the excluded 20% of the sample (the “validation” sample). We then compare

model performance on these samples to our previous results on performance in the “test”

sample of post-disaster data in Figure 3.

We find a similar ordering of relative model performance between the validation sample

and the test sample. For example, the GBM and the RF are the two best models using
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the training, validation, and test samples. The main exception is the regularization model

Regular, which appears to overfit less than the decision tree based models. The differences

in performance for this model between the training, validation, and test sets are much

smaller than for the grouping models; for example, Regular performs worse than DT in the

validation sample but better in the test sample. Overall, our experiments suggest that a

validation sample can provide a good guide to model performance even after a major change

in environment.

Figure 3: Average Percent Improvement in Predictive Accuracy using Percent Correct, on
the Training, Validation, and Test samples

Note: Percent correct measured relative to the baseline parametric logit model Logit. The training
sample is a random 80% of the data pre-disaster, the validation sample a random 20% of the data pre-
disaster, and the test sample data post-disaster. Bars represent 95% confidence intervals computed
from 500 bootstrap replications. See Table D-5 for the table of the estimates and confidence intervals
used to generate this figure.
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5.2 Model Combination

One major finding of machine learning is that ensembles of models can perform better than

one individual model (Van der Laan et al., 2007).18 These findings suggest that combining

the predictions from multiple models may lead to better predictions of behavior than using

a single “preferred model.” In this section, we examine how well a model combination

approach does in prediction compared to non-hybrid approaches.

While there are several ways to combine models, we apply a simple regression based ap-

proach that has been developed in the literature on optimal model combination for macroe-

conomic forecasts (Timmermann, 2006). To apply the method to our context, we treat each

patient-hospital choice as an observation, and regress each patient’s choice of hospital on

the predicted probabilities from all of the models in the period after the disaster without

including a constant, as below:

yih =
∑
k

βkŷkih + εih

where yih is the observed choice for patient i and hospital h and ŷkih is the predicted probability

for patient i and hospital h for model k. We constrain the coefficients on the models’

predictions to be non-negative and to sum to one. Thus, each coefficient in the regression

can be interpreted as a model weight, and models may be given zero weight. We perform

this analysis separately for each disaster, which enables us to see the variation in our findings

across the different settings.19

We examine the performance of the model combination predictions estimated on the 20%

validation sample (allowing estimated weights to vary by disaster) in the period after the

disaster. The model combination is the best model, but performs only slightly better than

RF and GBM. It provides a 21.4% (95% CI (19.9%, 22.9%)) improvement on Logit, compared

to 20.5% for RF and GBM.20 Given our confidence intervals, the model combination is not

18In this study, both GBM and RF are already combinations of hundreds of base learners and perform
very well.

19The regression framework implicitly deals with the correlations in predictions across models. If two
models are very highly correlated but one is a better predictor than the other, only the better of the two
models receives weight in the optimal model combination.

20See Table D-8 and Table D-9 for tables of the estimates and confidence intervals used to generate these
figures.
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statistically differentiable from the best machine learning models. Across experiments, the

model combination is the best model for 4 of the 6 experiments, although again by small

margins over the best model. Thus, we find evidence that a model combination performs

better, but not significantly better, than the best individual model.

5.3 Robustness

5.3.1 Standard Errors

One might have two major concerns with the reported statistical uncertainty of our results.

First, we are implicitly testing several hypotheses at once, such as the performance of several

different models or several different models across several disasters. We have thus examined

statistical tests that use the Bonferroni correction to adjust for multiple hypotheses. Av-

eraging across experiments, we would reject the null hypothesis that each of the machine

learning models performs the same as the Logit model. In the results by experiment reported

in Figure 2, we would reject that all of the machine learning models perform the same as the

Logit model for all of the experiments except Sumter; for Sumter, we fail to reject the null

for every model.21 In Section 6, we discuss why we fail to reject the null hypothesis that the

algorithmic models predict the same as Logit for the Sumter experiment.

Second, in our baseline results, we construct our confidence intervals by estimating the

prediction models once, holding the parameter estimates constant, and then bootstrapping

model predictions on the test set. This approach would allow for sampling error in the test

set, but not modeling error or sampling error in the training data.

We examine the importance of error in the training data by bootstrapping estimates

of the model on the training data. We do so for the random forest model because it is

quick to estimate, as well as for the logit models, using 200 bootstrap simulations. If we

compare each bootstrap model estimate on the same test set, we have a slightly smaller

confidence interval for RF relative to baseline. The percent correct for RF averaged across

experiments has a 95% CI of (46.2%, 46.6%) compared to (45.9%, 46.9%) in our baseline,

with an improvement over Logit of (19.8%, 21.3%) compared to (19.1%, 22.0%) at baseline.

21We also reject the null averaging across all experiments for Semipar compared to Logit, and reject the
null for Semipar for each experiment except Sumter and Coney.
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If we allow for sampling error in both the training and test set by examining predictions of

each bootstrap model estimate on a bootstrapped test set, we obtain the same confidence

intervals as our baseline. Thus, we are confident that our results are robust to issues related

to the statistical uncertainty of our estimates.

5.3.2 Changes in Patient Preferences

Our research design requires that the disaster did not affect the preferences of patients

seeking inpatient care. Patients’ preferences for a given hospital might have been affected by

the disaster if it became substantially more burdensome to travel to a hospital, or because

patients were forced to move. For all four disasters, we found that the extent of the damage

was limited compared to the size of the affected hospitals’ service areas. In Appendix A,

we display maps showing the extent of the destruction and summaries of our qualitative

research into the timeline of recovery. This gives us confidence that consumers’ travel costs

to the non-destroyed hospitals did not change after the disaster, after we drop the immediate

post-disaster period.

Another concern is that the extensive margin, the absolute number of patients seeking

care, falls after the disaster. In Appendix C.3, we show 6% to 14% drops in the number

of patients per month in the service area. However, because we condition on patient char-

acteristics, we only require that individual post-disaster patients’ preferences are analogous

to observably similar pre-disaster ones. The number of patients, or the characteristics of

patients on observable dimensions, are allowed to change over time.

Nevertheless, we further attempt to address the possibility of changes in patient prefer-

ences in several ways. First, in Appendix C.1 we compare areas with more or less disaster

damage for three of the disasters; presumably areas with less damage would be less likely to

have patient preferences change. Second, in Appendix C.2, we restrict attention to patients

seeking care for more acute conditions such as pregnancy or cardiac problems. Such patients

are very unlikely to try to defer seeking care even if their preferred option was destroyed.

We also examine differences by the acuity of the diagnosis and the identity of the payer. Our

main finding of substantial improvements in predictive performance for machine learning

models over our conditional logit baseline continue to hold in these subsamples.
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In Appendix C.4, we also show that our findings continue to hold after using RMSE

instead of percent correct as a prediction criterion.

6 Performance in Changing Environments

The above results demonstrate that, on average, the machine learning models we test tend

to predict better than conventional econometric models after the disaster induced change

in the choice set. However, this could be because we include many patients for whom their

preferred hospital was unaffected by the disaster, and so the destruction of a non-preferred

hospital had no effect on their choices.

In this section, we leverage the comparatively unique nature of our context and data to

test how well these models predict after a change in the choice environment. In this context,

one might worry that a machine learning approach that is fit based on its ability to predict

choices in the pre-period may be overfit. That overfit model, with parameters that are not

precisely estimated, could lead to very poor counterfactual predictions. In other words, these

models ability to provide insights into causal inference would be very poor.

In our implementation, we focus on the patients who were more likely to be substantially

affected by the elimination of their preferred hospital following the natural disaster. We do

this in three ways. First, we examine predictive accuracy across patients as a function of the

probability a similar patient would have gone to the destroyed hospital in the pre-disaster

period. We calculate these probabilities based on the groups constructed by Semipar. Sec-

ond, for our New York and California hospitals, we look at patients that had an admission at

the destroyed hospital in the pre-period. Third, we examine the weight that the model com-

bination approach places on the different models between the validation and test datasets.

For all three, we find that the relative improvement of the machine learning models over

the econometric model shrinks for patients more likely to have had a major change in their

choice set.
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6.1 Probability of Using Destroyed Hospital

In Figure 4a, we show the performance of the machine learning models relative to Logit,

broken down by the share of discharges of the destroyed hospital in the pre-disaster period.

The figure shows that the relative improvement of all of the machine learning models over

Logit is declining in the share of the destroyed hospital. GBM and RF continue to improve

over Logit, but they are only 12% better for groups for which the share of the destroyed

hospital was above 30%, compared to a 24% improvement for groups for which the share of

the destroyed hospital was below 10%. DT is only 3% better than Logit for groups for which

the pre-disaster share of the destroyed hospital is above 30%, while Semipar performs worse

than Logit for these groups. The improvement over our baseline parametric logit for groups

with a high share of the destroyed hospital is significantly below the improvement for groups

with a low share of the destroyed hospital for the machine learning models tested.

While instructive, only a few patients had a predicted share of the destroyed hospital

greater than 30% for many disasters. Therefore, we also look at results separately for Sumter,

because the pre-disaster share of the destroyed hospital was 50%, and there was significant

variation across groups in the pre-disaster share of the destroyed hospital. We display these

results in Figure 4b. In general, machine learning models did worse in areas with a larger

share of the destroyed hospital, with all of the models performing worse than Logit for a

destroyed hospital share of 50% or greater. For example, RF is 1% worse than Logit, and

GBM is 4 to 5% worse than Logit, for groups with a predicted destroyed hospital share above

50%. In contrast, many of the models perform better than Logit for groups with a predicted

share of the destroyed hospital between 15 and 50%.

6.2 Previous Patients

For our second approach, we focus on predictions for patients with a previous admission in

the destroyed hospital. Prior research suggests that these patients are more likely to have

gone to the destroyed hospital in the absence of the disaster (Raval and Rosenbaum, 2018).

We have a total of 633, 491, 624, and 1,036 admissions for such patients for NYU, Bellevue,

Coney, and St. Johns respectively. We depict these results in Figure 5, and compare them
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(a) Average (b) Sumter

Figure 4: Percent Improvement in Predictive Accuracy for Percent Correct By Share of
Destroyed Hospital

Note: Percent correct measured relative to the baseline parametric logit model Logit. Bars
represent 95% confidence intervals computed from 500 bootstrap replications. See Table D-6 and
Table D-7 for tables of the estimates and confidence intervals used to generate these figures.

to the average across these four experiments using all patients.

We find that the relative performance of machine learning models falls when only ex-

amining previously admitted patients. On average, the Semipar and DT models are worse

than Logit on the sample of patients with a previous admission. RF, GBM, and Regular are

6% to 7% better than Logit on the previously admitted patients, compared to 13% to 16%

better on all patients.

6.3 Model Combination Weights

Overall, the previous results suggest that machine learning approaches perform less well

relative to standard econometric approaches when focusing on people with the largest change

in their choice environment. Using our model combination approach, we now show that the

role for traditional parametric demand models increases in such situations. In Table 4, we

display the average model weights on the validation sample data, the post-disaster test data,
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Figure 5: Percent Improvement in Predictive Accuracy for Percent Correct for Previous
Patients

Note: Percent correct measured relative to the baseline parametric logit model Logit. Bars represent
95% confidence intervals computed from 500 bootstrap replications. See Table D-10 for the table of
the estimates and confidence intervals used to generate this figure.

and only observations in the post-disaster test sample for which the destroyed hospital had

at least a 30% share in their Semipar group.

We find that the parametric logit model has a much larger share in the post-disaster model

combination, especially when the disaster had a large effect on the choice environment. The

share of Logit rises from 2% using the validation sample, to 9% using the test sample, to

18% using the test sample on only observations with a destroyed hospital share above 30%

in their Semipar group. In addition, looking just at the results for Sumter, which had the

biggest change in choice set, we found that the model combination’s share of Logit is very

large at 48% to 57% for the datasets based on the test data, but only 11% in the validation

dataset. Thus, the parametric logit model has a greater role in the model combination with
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larger changes in the choice set.22

Table 4: Average Model Weights for Optimal Model Combination

Dataset Validation Test Test, Destroyed Share ≥ 30%

Logit 0.02 0.09 0.18
RF 0.16 0.26 0.22
GBM 0.67 0.43 0.27
DT 0.15 0.06 0.09
Regular 0.00 0.15 0.20
Semipar 0.00 0.02 0.03

Note: The second through fourth columns provides the average weight for each model across the
different experiments using the 20% validation sample, the test sample after the disaster, and only
observations in the post-disaster test sample for which the destroyed hospital had at least a 30%
share in their Semipar group, respectively.

6.4 Mechanisms

One potential reason why the machine learning models perform worse relative to the econo-

metric model with a larger change in the choice environment is that a less “local” model is

required with a less stable choice environment. That is, the number of data points for each

node is cross-validated based on the stable training data, when the choice environment is

stable, which may be smaller than optimal in the post period. One reason for this is that

the post period probabilities are only based on the choices of patients in the node who did

not go to the destroyed hospital, and so may be measured with greater error for nodes where

a large share of patients went to the destroyed hospital.

Alternatively, the machine learning models may perform worse because the analysts’

domain knowledge – here, encapsulated by travel time as a sufficient statistic for spatial

differentiation – is more valuable with larger changes in environment. We test between these

two explanations by estimating the random forest model with a small minimum node size

(10), and a large minimum node size (100). If the reason for the performance deterioration

22The Regular model also has its weight increase from 0% in the validation sample to 15% in the test
sample to 20% in the test sample on only observations with a destroyed hospital share above 30% in their
Semipar group. We do not have an explanation for this finding, but it is consistent with the lack of overfitting
of the Regular model.
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is that a less local, simpler statistical model is needed, the large minimum node size model

should perform better in regions with a large change in the choice environment.

We do not find evidence consistent with that prediction. In Figure 6.4, we depict the

small minimum node size (RF Small) and large minimum node size (RF Large) random

forest models, together with our previously cross-validated random forest model (RF ). The

left figure depicts performance by pre-period share of the destroyed hospital averaged across

all of the experiments, while the right figure examines the Sumter disaster. In both cases, the

large node size random forest model performs worse than the small node size random forest

model with a small change in the choice set, and equal or worse with a large change in the

choice set. All three random forest models are about 12% better than Logit for patients with

a greater than 30% probability of going to the destroyed hospital. For patients with a less

than 10% probability of going to the destroyed hospital, the small node size random forest

is 24% better than Logit, compared to 17% better for the large node size random forest.

For the Sumter disaster, the RF Small model always performs better than the RF Large

model, with the RF Large model performing significantly worse than Logit. This finding

is consistent with there being greater scope for an analyst to bring to bear their domain

knowledge when there is a larger change in the choice environment.

7 Discussion and Conclusion

In this paper, we show that machine learning models perform significantly better than tra-

ditional econometric models in predicting patient decisions following a specific type of treat-

ment. However, we find that their performance relative to econometric models deteriorates

as the treatment can be seen as having a larger change on their choice environment. We show

that the reason for this deterioration is that using economic domain knowledge to specify

parametric structure – in our case, horizontal differentiation due to distance – becomes more

important with a changing choice environment.

Therefore, when modeling provider demand, the research or policy question should guide

the choice of model. First, researchers often want to make predictions about patient demand

without needing to model changes to the choice set. In such cases, a machine learning model
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(a) Average (b) Sumter

Figure 6: Percent Improvement in Predictive Accuracy for Percent Correct By Share of
Destroyed Hospital, by RF Minimum Node Size

Note: Percent correct measured relative to the baseline parametric logit model Logit. Bars
represent 95% confidence intervals computed from 500 bootstrap replications. RF Large model is
the random forest model estimated using a minimum node size of 100, and the RF Small model is
the random forest model estimated using a minimum node size of 10. See Table D-11 and Table D-12
for tables of the estimates and confidence intervals used to generate these figures.

will likely provide better predictions. In terms of which machine learning model to choose, we

would recommend the random forest model. While we found that leading machine learning

models all had very good average predictive performance, the random forest model was the

fastest. Since analyses are often time sensitive, there may be large gains from choosing faster

approaches. Further, since the random forest model is averaging over many decision trees,

the effect of any given tuning parameter on the analysis may be smaller.23

In contexts where the researcher needs to model a large change in the choice set, such

as hospital merger analysis, we would generally suggest estimating an econometric model

– either by itself or in addition to a machine learning model. Our research shows that in

changing choice environments, the performance of machine learning models deteriorates. For

23We found that in some specifications, the optimal tuning parameter as selected by cross-validation could
materially affect the results for the decision tree model. By averaging over many randomized decision trees,
this is less likely to be an issue in the random forest and gradient boosting models.
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patients with the largest change in their choice environment, the predictive accuracy of the

machine learning model is weakly worse than that of the traditional econometric model. The

performance of machine learning models may deteriorate even more when the sample size is

small, i.e., due to significant subsetting.

In addition, traditional econometric models are designed to examine counterfactuals in

which the product characteristics change, such as the effects of entry and product reposition-

ing.24 Take, for example, the effect of entry of a new hospital; with the econometric model

estimated in this paper, one would have to make an assumption on the quality of the new

hospital through the fixed effect of the new hospital and add it to the existing choice set. By

contrast, for the random forest model, one would have to make assumptions on the quality

of the new hospital for each of hundreds of endogenously determined groups and thousands

of trees, which would be very complicated to do in practice. Therefore, for the foresee-

able future we see machine learning and econometric approaches as being complementary

approaches for businesses and policy makers alike.

Overall, we believe that our results illustrate the complementarity of data and domain

knowledge. When the machine learning algorithm is being used purely to predict behavior

without any change in the surrounding environment, an off the shelf algorithm will likely

do a good job at prediction (Mullainathan and Spiess, 2017). However, as the environment

changes, a pure prediction model may do a poor job of predicting in the new setting. There-

fore, when the choice environment changes, researchers need to use their domain knowledge

and incorporate that into their estimating framework in order to better predict future out-

comes. This is an important note to keep in mind as researchers develop and use methods

that use the tools of machine learning to conduct causal inference (e.g., Belloni et al., 2014;

Wager and Athey, 2018).

24See Raval and Rosenbaum (forthcoming) and Raval and Rosenbaum (2018) for examples of each in the
hospital context.
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A Background on Disasters

In this section, we give brief narrative descriptions of the destruction in the areas surrounding the

destroyed hospitals.

A.1 St. John’s (Northridge Earthquake)

On January 17th, 1994, an earthquake rated 6.7 on the Richter scale hit the Los Angeles Metropoli-

tan area 32 km northwest of Los Angeles. This earthquake killed 61 people, injured 9,000, and

seriously damaged 30,000 homes. According to the USGS, the neighborhoods worst affected by

the earthquake were the San Fernando Valley, Northridge and Sherman Oaks, while the neighbor-

hoods of Fillmore, Glendale, Santa Clarita, Santa Monica, Simi Valley and western and central Los

Angeles also suffered significant damage.25 Over 1,600 housing units in Santa Monica alone were

damaged with a total cost of $70 million.26

The earthquake damaged a number of major highways of the area; in our service area, the most

important was the I-10 (Santa Monica Freeway) that passed through Santa Monica. It reopened

on April 11, 1994.27 By that time, many of those with damaged houses had found new housing.28

Santa Monica Hospital, located close to St. John’s, remained open but at a reduced capacity of

178 beds compared to 298 beds before the disaster. In July 1995, Santa Monica Hospital merged

with UCLA Medical Center.29 St. John’s hospital reopened for inpatient services on October 3,

1994, although with only about half of the employees and inpatient beds and without its North

Wing (which was razed).30

A.2 Sumter (Americus Tornado)

On March 1, 2007, a tornado went through the center of the town of Americus, GA, damaging

993 houses and 217 businesses. The tornado also completely destroyed Sumter Regional Hospital.

An inspection of the damage map in the text and GIS maps of destroyed structures suggests

25See http://earthquake.usgs.gov/earthquakes/states/events/1994_01_17.php.
26See http://smdp.com/santa-monicans-remember-northridge-earthquake/131256.
27See http://articles.latimes.com/1994-04-06/news/mn-42778_1_santa-monica-freeway.
28See http://www.nytimes.com/1994/03/17/us/los-angeles-is-taking-rapid-road-to-

recovery.html?pagewanted=all.
29See http://articles.latimes.com/1995-07-21/business/fi-26439_1_santa-monica-hospital-

medical-center.
30See http://articles.latimes.com/1994-09-23/local/me-42084_1_inpatient-services.
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that the damage was relatively localized – the northwest part of the city was not damaged, and

very few people in the service area outside of the town of Americus were affected.31 Despite the

tornado, employment remains roughly constant in the Americus Micropolitan Statistical Area after

the disaster, at 15,628 in February 2007 before the disaster and 15,551 in February 2008 one year

later.32

While Sumter Regional slowly re-introduced some services such as urgent care, they did not

reopen for inpatient admissions until April 1, 2008 in a temporary facility with 76 beds and 71,000

sq ft of space. Sumter Regional subsequently merged with Phoebe Putney Hospital in October

2008, with the full merge completed on July 1, 2009. On December 2011, a new facility was built

with 76 beds and 183,000 square feet of space.33

A.3 NYU, Bellevue, and Coney Island (Superstorm Sandy)

Superstorm Sandy hit the New York Metropolitan area on October 28th - 29th, 2012. The storm

caused severe localized damage and flooding, shutdown the New York City Subway system, and

caused many people in the area to lose electrical power. By November 5th, normal service had

been restored on the subways (with minor exceptions).34 Major bridges reopen on October 30th

and NYC schools reopen on November 5th.35 By November 5th, power is restored to 70 percent of

New Yorkers, and to all New Yorkers by November 15th.

FEMA damage inspection data reveals that most of the damage from Sandy occured in areas

adjacent to water.36 Manhattan is relatively unaffected, with even areas next to the water suffering

little damage. In the Coney Island area, the island tip suffers more damage, but even here, most

block groups suffer less than 50 percent damage. Areas on the Long Island Sound farther east of

Coney Island, such as Long Beach, are much more affected.

NYU Langone Medical Center suffered about $1 billion in damage due to Sandy, with its main

generators flooded. While some outpatient services reopened in early November, it only partially

reopened inpatient services on December 27, 2012, including some surgical services and medical

31See https://www.georgiaspatial.org/gasdi/spotlights/americus-tornado for the GIS map.
32See http://beta.bls.gov/dataViewer/view/timeseries/LAUMC131114000000005;jsessionid=

212BF9673EB816FE50F37957842D1695.tc_instance6.
33See https://www.phoebehealth.com/phoebe-sumter-medical-center/phoebe-sumter-medical-

center-about-us and http://www.wtvm.com/story/8091056/full-medical-services-return-to-

americus-after-opening-of-sumter-regional-east.
34See http://web.mta.info/sandy/timeline.htm.
35See http://www.cnn.com/2013/07/13/world/americas/hurricane-sandy-fast-facts/.
36See the damage map at https://www.huduser.gov/maps/map_sandy_blockgroup.html.
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and surgical intensive care. The maternity unit and pediatrics reopened on January 14th, 2013. 37

While NYU Langone opened an urgent care center on January 17, 2013, a true emergency room

did not open until April 24, 2014, more than a year later.38

Bellevue Hospital Center reopened limited outpatient services on November 19th, 2012.39 How-

ever, Bellevue did not fully reopen inpatient services until February 7th, 2013.40 Coney Island Hos-

pital opened an urgent care center by December 3, 2012, but patients were not admitted inpatient.

It had reopened ambulance service and most of its inpatient beds by February 20th, 2013, although

at that time trauma care and labor and delivery remained closed. The labor and delivery unit did

not reopen until June 13th, 2013.41

A.4 Moore (Moore Tornado)

A tornado went through the Oklahoma City suburb of Moore on May 20, 2013. The tornado

destroyed two schools and more than 1,000 buildings (damaging more than 1,200 more) in the area

of Moore and killed 24 people. Interstate 35 was briefly closed for a few hours due to the storm.42

Maps of the tornado’s path demonstrate that while some areas were severely damaged, most nearby

areas were relatively unaffected.43

Emergency services, but not inpatient admissions, temporarily reopened at Moore Medical

Center on December 2, 2013. Groundbreaking for a new hospital took place on May 20, 2014,

while the new hospital opened May 6, 2016.44

37See http://www.cbsnews.com/news/nyu-langone-medical-center-partially-reopens-after-

sandy/.
38See http://fox6now.com/2013/01/17/nyu-medical-center-reopens-following-superstorm-

sandy/ and http://www.nytimes.com/2014/04/25/nyregion/nyu-langone-reopens-emergency-room-

that-was-closed-by-hurricane-sandy.html.
39See http://www.cbsnews.com/news/bellevue-hospital-in-nyc-partially-reopens/.
40See

http://www.nbcnewyork.com/news/local/Bellevue-Hospital-Reopens-Sandy-Storm-East-River-

Closure-190298001.html.
41See http://www.sheepsheadbites.com/2012/12/coney-island-hospital-reopens-urgent-care-

center/, http://www.sheepsheadbites.com/2013/02/coney-island-hospital-reopens-er-limited-

911-intake/, and http://www.sheepsheadbites.com/2013/06/photo-first-post-sandy-babies-

delivered-at-coney-island-hospital-after-labor-and-delivery-unit-reopens/.
42See http://www.news9.com/story/22301266/massive-tornado-kills-at-least-51-in-moore-

hits-elementary-school.
43See http://www.srh.noaa.gov/oun/?n=events-20130520 and http://www.nytimes.com/

interactive/2013/05/20/us/oklahoma-tornado-map.html for maps of the tornado’s path.
44See https://www.normanregional.com/en/locations.html?location_list=2, http://kfor.

com/2013/11/20/moore-medical-center-destroyed-in-tornado-to-reopen-in-december/, and
https://oklahoman.com/article/5494931/norman-regional-moore-readies-for-reopening-three-

36

http://www.cbsnews.com/news/nyu-langone-medical-center-partially-reopens-after-sandy/
http://www.cbsnews.com/news/nyu-langone-medical-center-partially-reopens-after-sandy/
http://fox6now.com/2013/01/17/nyu-medical-center-reopens-following-superstorm-sandy/
http://fox6now.com/2013/01/17/nyu-medical-center-reopens-following-superstorm-sandy/
http://www.nytimes.com/2014/04/25/nyregion/nyu-langone-reopens-emergency-room-that-was-closed-by-hurricane-sandy.html
http://www.nytimes.com/2014/04/25/nyregion/nyu-langone-reopens-emergency-room-that-was-closed-by-hurricane-sandy.html
http://www.cbsnews.com/news/bellevue-hospital-in-nyc-partially-reopens/
http://www.nbcnewyork.com/news/local/Bellevue-Hospital-Reopens-Sandy-Storm-East-River-Closure-190298001.html
http://www.nbcnewyork.com/news/local/Bellevue-Hospital-Reopens-Sandy-Storm-East-River-Closure-190298001.html
http://www.sheepsheadbites.com/2012/12/coney-island-hospital-reopens-urgent-care-center/
http://www.sheepsheadbites.com/2012/12/coney-island-hospital-reopens-urgent-care-center/
http://www.sheepsheadbites.com/2013/02/coney-island-hospital-reopens-er-limited-911-intake/
http://www.sheepsheadbites.com/2013/02/coney-island-hospital-reopens-er-limited-911-intake/
http://www.sheepsheadbites.com/2013/06/photo-first-post-sandy-babies-delivered-at-coney-island-hospital-after-labor-and-delivery-unit-reopens/
http://www.sheepsheadbites.com/2013/06/photo-first-post-sandy-babies-delivered-at-coney-island-hospital-after-labor-and-delivery-unit-reopens/
http://www.news9.com/story/22301266/massive-tornado-kills-at-least-51-in-moore-hits-elementary-school
http://www.news9.com/story/22301266/massive-tornado-kills-at-least-51-in-moore-hits-elementary-school
http://www.srh.noaa.gov/oun/?n=events-20130520
http://www.nytimes.com/interactive/2013/05/20/us/oklahoma-tornado-map.html
http://www.nytimes.com/interactive/2013/05/20/us/oklahoma-tornado-map.html
https://www.normanregional.com/en/locations.html?location_list=2
http://kfor.com/2013/11/20/moore-medical-center-destroyed-in-tornado-to-reopen-in-december/
http://kfor.com/2013/11/20/moore-medical-center-destroyed-in-tornado-to-reopen-in-december/
https://oklahoman.com/article/5494931/norman-regional-moore-readies-for-reopening-three-years-after-tornado-ripped-through-hospital?
https://oklahoman.com/article/5494931/norman-regional-moore-readies-for-reopening-three-years-after-tornado-ripped-through-hospital?


Figure 7: Damage Map in Americus, GA

Note: The green line indicates the path of the tornado and the shaded area around it is the
government designated damage area. The zip codes included in the service area are outlined in pink.
Sources: City of Americus, GA Discharge Data.

A.5 Geographic Extent of Damage

In this subsection, we present graphical evidence of the scope of damage in Sumter, Moore, New

York (NYU, Bellevue, and Coney Island), and Los Angeles in Figure 7 - Figure 10. In each figure,

zip codes in the service area are outlined.

Figure 7 shows the path of the tornado that destroyed Sumter Regional Hospital as a green

line. The figure indicates that it cut through Americus city without affecting the surrounding areas.

As shown in Figure 8, the Moore tornado had a similar effect for the city of Moore relative to its

neighboring suburbs.

Figure 9 shows the damage caused by Superstorm Sandy to the areas surrounding NYU, Belle-

vue, and Coney Island. Flooding – the damage from which is depicted in green shading – primarily

affected areas adjacent to water. The actual damage in Manhattan from Sandy – most of which

classified by FEMA as “minor” – was concentrated in a relatively small part of the Manhattan

hospitals’ service areas. On Coney Island, most of the flooding affected the three zip codes at the

bottom of the service area that are directly adjacent to Long Island Sound.

Finally, Figure 10 shows the damage in the Los Angeles area from the Northridge earthquake.

years-after-tornado-ripped-through-hospital?.
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Figure 8: Damage Map in Moore, OK

Note: The green area indicates the damage path of the tornado. The zip codes included in the
service area are outlined in pink. Sources: NOAA, OK Discharge Data

We depict the intensity of earthquake shaking with darker green shading, and the figure shows that

damage was more widespread than in the other disasters. However, while the Santa Monica area

was particularly hard hit, many areas nearby suffered comparatively little structural damage from

the earthquake.

B Dataset Construction

For each dataset, we drop newborns, transfers, and court-ordered admissions. Newborns do not

decide which hospital to be born in (admissions of their mothers, who do, are included in the

dataset); similarly, government officials or physicians, and not patients, may decide hospitals for

court-ordered admissions and transfers. We drop diseases of the eye, psychological diseases, and

rehabilitation based on Major Diagnostic Category (MDC) codes, as patients with these diseases

may have other options for treatment beyond general hospitals. We also drop patients whose MDC

code is uncategorized (0), and neo-natal patients above age one. We also exclude patients who are

missing gender or an indicator for whether the admission is for a Medical Diagnosis Related Group

(DRG). We also remove patients not going to General Acute Care hospitals.

For each disaster, we estimate models on the pre-period prior to the disaster and then validate
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Figure 9: Damage Map in New York, NY

Note: Green dots indicate buildings with damage classified as “Minor”, “Major”, or “Destroyed”
by FEMA. The zip codes included in the service area for Bellevue are outlined in gray, for NYU
are outlined in pink, and for Coney Island are outlined in blue. The other border colors are for zip
codes that are in the service areas of multiple hospitals (maroon is for NYU and Bellevue and red
is for NYU and Coney Island). Sources: FEMA, NY Discharge Data
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Figure 10: Damage Map in Los Angeles, CA

Note: Darker green areas indicate the earthquake intensity measured by the Modified Mercalli
Intensity (MMI); an MMI value of 7 reflects non-structural damage and a value of 8 moderate
structural damage. The areas that experienced the quake with greater intensity were shaded in a
darker color, with the MMI in the area ranging from 7-8.6. Any areas with an MMI of below 7
were not colored. The zip codes included in the service area are outlined in pink. Sources: USGS
Shakemap, OSHPD Discharge Data

them on the period after the disaster. In all cases, we omit the month of the disaster from either

period, excluding anyone either admitted or discharged in the disaster month. We also omit addi-

tional months if our information suggests that the area has not recovered yet. The length of the

pre-period and post-period in general also depend upon the length of the discharge data that we

have available. Table B-1 contains the disaster date and the pre-period and post-period for each

disaster, where months are defined by time of admission.

NYU hospital began limited inpatient service on December 27, 2012; unfortunately, we only

have month and not date of admission and so cannot remove all patients admitted after December

27th. Right now, we drop 65 patients admitted in December to NYU; this patient population is

very small compared to the size and typical capacity of NYU.

For California, we exclude all patients going to Kaiser hospitals, as Kaiser is a vertically in-

tegrated insurer and almost all patients with Kaiser insurance go to Kaiser hospitals, and very

few patients without Kaiser insurance go to Kaiser hospitals. This is in line with the literature

examining hospital choice in California including Capps et al. (2003). We also exclude February

though April 1994, as the I-10 Santa Monica freeway that goes through Santa Monica only reopens
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in April.

Table B-1: Pre and Post Periods for Disasters

Hospital Closure Date Pre-Period Post-Period Partial Reopen Full Reopen

St. Johns 1/17/94 1/92 to 1/94 5/94 to 9/94 10/3/94 10/3/94
Sumter 3/1/07 1/06 to 2/07 4/07 to 3/08 4/1/08 4/1/08
NYU 10/29/12 1/12 to 9/12 11/12 to 12/12 12/27/12 4/24/14
Bellevue 10/31/12 1/12 to 9/12 11/12 to 12/12 2/7/13 2/7/13
Coney 10/29/12 1/12 to 9/12 11/12 to 12/12 2/20/13 6/11/13
Moore 5/20/13 1/12 to 4/13 6/13 to 12/13 5/7/16 5/7/16

C Robustness

In this section, we evaluate the robustness of our conclusions to removing areas with more damage

from the disaster, to examining only specific patient groups, and to using RMSE instead of percent

correct as a prediction criterion. We find that doing so does not lead to substantially different

conclusions than described earlier. We also examine how the case-mix of the service area changes

post-disaster, and find evidence of reductions in the number of inpatient admissions after the

disaster.

C.1 Removing Destroyed Areas

Our first approach to evaluating the robustness of our conclusions is to consider the effect of

removing the areas most affected by the disaster from our estimates of model performance after

the disaster. If destruction from the disaster affects how patients make decisions beyond just the

change in the choice set (for example, they are forced to move), then models estimated before the

disaster may not be able to predict patients’ decisions after the disaster. We focus on Sumter,

Coney Island, and Northridge. We do not remove any areas for NYU or Bellevue, as the area

immediately nearby these hospitals had very little post-Sandy damage. For Moore, removing the

zip codes through which the tornado traversed would remove almost all of the patients from the

choice set, so we do not conduct this robustness check for Moore.

For Sumter, we remove the two zip codes comprising the city of Americus, for the tornado

mainly damaged the city rather than its outlying areas. For Coney Island, we remove the three
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zip codes that submitted the most post-disaster claims to FEMA; these zip codes are on the Long

Island Sound and likely suffered more from flooding after Sandy. For St. Johns, we remove zip

codes with an average Modified Mercalli Intensity (MMI) of 8 or above based on zip code level data

from an official report on the Northridge disaster for the state of California. The US Geological

Survey defines MMI values of 8 and above as causing structural damage. This removes 9 zip codes,

including all 5 zip codes in Santa Monica.45 The areas removed tend to have higher market shares

for the destroyed hospital. Thus, removing destroyed areas cuts Sumter’s market share from about

50 percent to 31 percent, St. John’s market share falls from 17 to 14 percent, and Coney’s from

about 18 to 10 percent.

We estimate the models on the full pre-disaster sample but separately evaluate our performance

validation measures based on whether the patient came from an area with or without significant

damage. In Figure 11, we display these results for the damaged areas in the left figure, and for

the relatively non-damaged areas in the right figure. We find that the machine learning models

almost always outperform the econometric models for Coney and St. Johns in both the damaged

and non-damaged areas, although their margin of improvement is larger in the destroyed areas for

Coney and smaller for St. Johns.

For Sumter, GBM and RF slightly underperform Logit in the damaged areas, and out perform

Logit in the non destroyed areas, consistent with our evidence on how the models performed with

different shares of the destroyed hospital in Section 6. Regular and Semipar perform slightly better

than Logit in the destroyed areas, but much worse in the non destroyed areas.

C.2 Patient Heterogeneity

For our second robustness check, we consider the performance of different predictive models for

different types for patients. First, we examine seven important classes of patients based on their

diagnosis: cardiac patients (with a Major Diagnostic Category of 5), obstetrics patients (with a

Major Diagnostic Category of 14), non-emergency as well as emergency patients, and terciles of

the disease acuity of patients, measuring disease acuity by DRG weight. We estimate the models

on all patients, but then separately examine their performance for patients in the given groups.

45The zip codes removed are 31719 and 31709 for Sumter; 90025, 90064, 90401, 90402, 90403, 90404, 90405,
91403, and 91436 for St. Johns; and 11224, 11235, and 11229 for Coney. See http://www.arcgis.com/

home/webmap/viewer.html?webmap=f27a0d274df34a77986f6e38deba2035 for Census block level estimates
of Sandy damage based on FEMA reports. See ftp://ftp.ecn.purdue.edu/ayhan/Aditya/Northridge94/
OES%20Reports/NR%20EQ%20Report_Part%20A.pdf, Appendix C, for the Northridge MMI data by zip code.
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(a) Damaged Areas (b) Non-Damaged Areas

Figure 11: Relative Improvement in Percent Correct – Damaged vs. Non-Damaged Areas

Note: Percent correct measured relative to the baseline parametric logit model Logit. Bars
represent 95% confidence intervals computed from 500 bootstrap replications. See Table D-13 and
Table D-14 for tables of the estimates and confidence intervals used to generate these figures.

Figure 12 displays the results of our different robustness checks. The machine learning models

continue to do significantly better than Logit for all of the groups. Their relative performance is

better for emergency compared to non-emergency patients, and for pregnancy compared to cardiac

patients. For example, RF is 44% better than Logit for emergency patients compared to 35%

better for non-emergency patients, and is 35% better for pregnancy patients compared to 24%

better for cardiac patients. We find better relative performance for machine learning models for

low acuity patients than medium acuity patients, and medium acuity patients compared to high

acuity patients.

In addition, we check whether our conclusions hold if we restrict the data sample to the patient

population for different payers. For the Medicare sample, we also reestimate the models on only the

Medicare sample, as this sample should have unrestricted access to all the hospitals in the choice

set.46

We depict these estimates in Figure 13; the machine learning models continue to improve

46For the states for which Fee for Service Medicare and Managed Care Medicare are distinguished, we
exclude Managed Care Medicare patients. The Medicare sample should have unrestricted access across all
of the hospitals in the choice set.
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(a) Emergency and MDC (b) Acuity

Figure 12: Average Relative Improvement in Percent Correct: Robustness

Note: Percent correct measured relative to the baseline parametric logit model Logit. We examine
cardiac, pregnancy, emergency, and non-emergency patients separately in the left figure, and disease
acuity (DRG weight) divided into terciles in the right figure. Bars represent 95% confidence intervals
computed from 500 bootstrap replications. See Table D-15 and Table D-16 for tables of the estimates
and confidence intervals used to generate these figures.

over our baseline econometric model for all types of payers. For example, on average, RF is

31% better than Logit for commercial patients, 19% better for Medicare patients, 15.5% better

for Medicare patients (re-estimating the models on Medicare patients only), and 51% better for

Medicaid patients. While the machine learning models tend to do relatively better on Medicaid

patients compared to commercial patients, and commercial patients compared to Medicare patients,

they outperform our baseline parametric logit model for all types of patients.

C.3 Case Mix

In this section, we examine how the case mix changed from the period before the disaster to the

period after the disaster. The case mix could have changed for a couple of reasons. First, patients

could have left the service area after the disaster, perhaps because their homes or workplaces were

damaged. Second, some patients could have decided not to receive medical assistance after the

hospital closest to them was destroyed. Changes in case mix could indicate substantial changes to

the service area that make the disaster less of an clean experiment.
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Figure 13: Average Relative Improvement in Percent Correct: Payer Type

Note: Percent correct measured relative to the baseline parametric logit model Logit. For the
Medicare (Separate Est) bars, we examine Medicare patients only and reestimate all of the models
on the Medicare only sample in order to develop predictions. Bars represent 95% confidence inter-
vals computed from 500 bootstrap replications. See Table D-17 for the table of the estimates and
confidence intervals used to generate this figure.

In Table B-2 to Table B-7, we examine changes in case mix across a set of variables including

age, fraction aged less than 18, fraction aged above 64, diagnosis acuity (DRG weight), fraction

circulatory diagnosis (MDC 5), fraction labor/pregnancy diagnosis (MDC 14), fraction using a

commercial payer, fraction using Medicare, and average number of admissions per month. We

report the average of each variable in the pre-period, post-period, as well as the percent difference

between the two.

There are no large changes in age across the hospitals, except that the fraction admitted under

18 falls by 23 percent for Moore and 45 percent for Sumter. Diagnosis acuity does not change much

after the disasters. The only large change in type of insurance is for Sumter, where the fraction

of commercial insurance falls by about 30 percent after the disaster. We examined this change;

the fraction of patients reporting “Unspecified Other” payer rises precipitously in the first quarter
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after the disaster, and then falls back to a small fraction of patients. Our belief is that this reflects

improper coding post-disaster.

The number of admissions per month falls in all service areas, ranging from 6 to 8 percent for

NYU, Coney, Moore, and St. John’s, 11 percent for Bellevue, and 14 percent for Sumter. This

likely reflects some extensive margin in inpatient admissions, consistent with the findings of Petek

(2016) from hospital exits. The fraction of labor/pregnancy diagnosis rises in all service areas, and

by more than 10 percent for Bellevue and Coney, which may be because pregnancies cannot be

postponed or ignored and so have no extensive margin. Overall, we do not find major changes in

case mix after the disaster, except for the fall in admissions across the service areas and the fall in

the under 18 share for Sumter and Moore.

Table B-2: Changes in Case-Mix for Moore

Variable Training Test Percent Difference

Age 51.68 51.79 0.21%
Age < 18 0.06 0.05 -23.37%
Age > 64 0.36 0.35 -2.67%
Diagnosis Acuity 1.41 1.44 2.23%
Circulatory Diagnosis 0.12 0.10 -12.02%
Labor/Pregnancy Diagnosis 0.20 0.22 6.86%
Commercial Payer 0.35 0.36 3.76%
Medicare Payer 0.40 0.39 -1.79%
Admissions Per Month 610 560 -8.22%

Note: The second column is the average of the variable in the pre-disaster training data, while
the third column is the average of the variable in the post-disaster test data. The fourth column is
the percent difference from the pre-disaster training data to the post-disaster test data.

C.4 RMSE as Prediction Criterion

Our baseline prediction criterion of percent correct ignores the models’ estimates of probabilities

for non-selected choices. However, estimates of welfare depend on probabilities of all hospitals in

the choice set, and not just the chosen hospital. Therefore, we also present many of our results

using root mean squared error across the probabilities of all choices, which penalizes models that

incorrectly predict probabilities for low probability hospitals that none of the models would select

as the most likely choice. We find similar results to our earlier results with percent correct using

RMSE as a prediction criterion.
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Table B-3: Changes in Case-Mix for Coney

Variable Training Test Percent Difference

Age 57.59 57.65 0.11%
Age < 18 0.05 0.05 3.18%
Age > 64 0.46 0.47 3.05%
Diagnosis Acuity 1.34 1.39 3.41%
Circulatory Diagnosis 0.20 0.19 -5.17%
Labor/Pregnancy Diagnosis 0.16 0.18 13.30%
Commercial Payer 0.19 0.18 -6.23%
Medicare Payer 0.46 0.47 2.26%
Admissions Per Month 5176 4833 -6.63%

Note: The second column is the average of the variable in the pre-disaster training data, while
the third column is the average of the variable in the post-disaster test data. The fourth column is
the percent difference from the pre-disaster training data to the post-disaster test data.

In Figure 14, we depict the percent improvement in RMSE (so the negative in the change in

RMSE) relative to Logit, averaged over all of the experiments. We again find that GBM and RF are

the best models. However, the margin of improvement over Logit is much smaller; GBM and RF are

both about 3.7% better than the baseline parametric logit model Logit. The regularization model

Regular is about 2.5% better than Logit. The only major difference compared to our results for

percent predicted is that the DT model performs relatively much worse, at only a 0.6% improvement

over Logit.

In Figure 15, we show these results by disaster. For Sumter, all of the machine learning models

are now worse than Logit ; RF is 0.7% worse and GBM is 1.5% worse. However, for all of the other

experiments, we find that RF or GBM are the best two models.

D Supplemental Tables
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Figure 14: Percent Improvement in Predictive Accuracy using RMSE – Averaged over all
Experiments

Note: Predictive Accuracy is Measured as RMSE, averaged over all experiments and measured
relative to the baseline parametric logit model Logit ; since we depict percent improvement, the neg-
ative is the change in RMSE. Bars represent 95% confidence intervals computed from 500 bootstrap
replications. See Table D-18 for a table of the estimates and confidence intervals used to generate
this figure.
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Figure 15: Percent Improvement in Predictive Accuracy using RMSE – By Experiment

Note: RMSE measured relative to the baseline parametric logit model Logit ; since we depict
percent improvement, the negative is the change in RMSE. Bars represent 95% confidence intervals
computed from 500 bootstrap replications. See Table D-19 for a table of the estimates and confidence
intervals used to generate this figure.
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Table B-4: Changes in Case-Mix for NYU

Variable Training Test Percent Difference

Age 56.09 56.61 0.93%
Age < 18 0.05 0.05 2.54%
Age > 64 0.42 0.44 4.71%
Diagnosis Acuity 1.28 1.30 1.01%
Circulatory Diagnosis 0.17 0.16 -7.74%
Labor/Pregnancy Diagnosis 0.18 0.20 7.16%
Commercial Payer 0.32 0.31 -2.87%
Medicare Payer 0.42 0.44 4.83%
Admissions Per Month 8883 8348 -6.03%

Note: The second column is the average of the variable in the pre-disaster training data, while
the third column is the average of the variable in the post-disaster test data. The fourth column is
the percent difference from the pre-disaster training data to the post-disaster test data.

Table B-5: Changes in Case-Mix for Bellevue

Variable Training Test Percent Difference

Age 53.83 55.10 2.35%
Age < 18 0.06 0.05 -12.89%
Age > 64 0.38 0.41 9.03%
Diagnosis Acuity 1.25 1.29 3.15%
Circulatory Diagnosis 0.18 0.16 -6.84%
Labor/Pregnancy Diagnosis 0.17 0.19 10.79%
Commercial Payer 0.24 0.24 -2.08%
Medicare Payer 0.39 0.42 9.23%
Admissions Per Month 5140 4576 -10.97%

Note: The second column is the average of the variable in the pre-disaster training data, while
the third column is the average of the variable in the post-disaster test data. The fourth column is
the percent difference from the pre-disaster training data to the post-disaster test data.
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Table B-6: Changes in Case-Mix for St. Johns

Variable Training Test Percent Difference

Age 54.34 53.78 -1.02%
Age < 18 0.05 0.05 11.83%
Age > 64 0.41 0.40 -2.19%
Diagnosis Acuity 1.23 1.27 3.14%
Circulatory Diagnosis 0.17 0.18 5.38%
Labor/Pregnancy Diagnosis 0.18 0.19 5.98%
Commercial Payer 0.44 0.47 6.23%
Medicare Payer 0.38 0.34 -8.91%
Admissions Per Month 3881 3626 -6.58%

Note: The second column is the average of the variable in the pre-disaster training data, while
the third column is the average of the variable in the post-disaster test data. The fourth column is
the percent difference from the pre-disaster training data to the post-disaster test data.

Table B-7: Changes in Case-Mix for Sumter

Variable Training Test Percent Difference

Age 53.76 54.27 0.94%
Age < 18 0.07 0.04 -44.86%
Age > 64 0.38 0.37 -4.62%
Diagnosis Acuity 1.24 1.29 3.71%
Circulatory Diagnosis 0.16 0.18 11.41%
Labor/Pregnancy Diagnosis 0.15 0.16 7.86%
Commercial Payer 0.28 0.20 -28.40%
Medicare Payer 0.42 0.40 -5.22%
Admissions Per Month 496 424 -14.40%

Note: The second column is the average of the variable in the pre-disaster training data, while
the third column is the average of the variable in the post-disaster test data. The fourth column is
the percent difference from the pre-disaster training data to the post-disaster test data.
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Table D-1: Predictive Accuracy using Percent Correct – Averaged over all Experiments

Model Percent Correct

Indic 0.286
(0.280, 0.291)

Logit 0.396
(0.391, 0.400)

Regular 0.456
(0.451, 0.460)

DT 0.441
(0.436, 0.445)

GBM 0.464
(0.459, 0.469)

RF 0.464
(0.459, 0.469)

Semipar 0.414
(0.409, 0.419)

Note: The table depicts average percent correct, averaged over all experiments. 95% confidence
intervals computed from 500 bootstrap replications are in parentheses.

Table D-2: Predictive Accuracy using Percent Correct – Averaged over all Experiments –
Relative to Logit

Model Relative Percent Correct

RRegular 0.188
(0.174, 0.202)

DT 0.149
(0.135, 0.163)

GBM 0.205
(0.190, 0.219)

RF 0.205
(0.191, 0.220)

Semipar 0.057
(0.047, 0.067)

Note: The table depicts the average percent correct, averaged across the different experiments,
measured relative to the baseline parametric logit model Logit. 95% confidence intervals computed
from 500 bootstrap replications are in parentheses.
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Table D-3: Predictive Accuracy using Percent Correct – By Experiment

Model Sumter StJohns NYU Moore Coney Bellevue

Indic 0.462 0.200 0.197 0.196 0.331 0.326
(0.449,
0.475)

(0.194,
0.206)

(0.191,
0.203)

(0.184,
0.209)

(0.322,
0.341)

(0.316,
0.336)

Logit 0.615 0.319 0.404 0.295 0.336 0.405
(0.602,
0.628)

(0.312,
0.325)

(0.397,
0.412)

(0.281,
0.309)

(0.327,
0.346)

(0.394,
0.415)

Regular 0.589 0.375 0.458 0.480 0.363 0.468
(0.577,
0.602)

(0.368,
0.382)

(0.451,
0.465)

(0.465,
0.495)

(0.353,
0.373)

(0.457,
0.478)

DT 0.573 0.357 0.442 0.461 0.363 0.447
(0.559,
0.587)

(0.350,
0.364)

(0.435,
0.450)

(0.446,
0.476)

(0.354,
0.373)

(0.437,
0.458)

GBM 0.619 0.381 0.465 0.472 0.369 0.477
(0.607,
0.632)

(0.374,
0.389)

(0.458,
0.473)

(0.456,
0.487)

(0.359,
0.379)

(0.467,
0.487)

RF 0.628 0.380 0.459 0.481 0.370 0.467
(0.615,
0.641)

(0.373,
0.387)

(0.452,
0.467)

(0.466,
0.496)

(0.360,
0.379)

(0.457,
0.477)

Semipar 0.606 0.346 0.430 0.336 0.344 0.424
(0.593,
0.619)

(0.339,
0.353)

(0.422,
0.437)

(0.322,
0.350)

(0.334,
0.354)

(0.414,
0.434)

Note: The table depicts average percent correct by experiment. 95% confidence intervals computed
from 500 bootstrap replications are in parentheses.
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Table D-4: Predictive Accuracy using Percent Correct – By Experiment – Relative to Logit

Model Sumter StJohns NYU Moore Coney Bellevue

Regular -0.041 0.177 0.133 0.627 0.080 0.156
(-0.057, -
0.025)

(0.155,
0.199)

(0.116,
0.149)

(0.559,
0.695)

(0.057,
0.102)

(0.132,
0.179)

DT -0.068 0.120 0.093 0.563 0.081 0.105
(-0.086, -
0.050)

(0.096,
0.143)

(0.076,
0.111)

(0.493,
0.633)

(0.056,
0.106)

(0.081,
0.129)

GBM 0.008 0.197 0.150 0.598 0.098 0.178
(-0.009,
0.024)

(0.174,
0.219)

(0.132,
0.168)

(0.526,
0.670)

(0.075,
0.120)

(0.154,
0.202)

RF 0.022 0.192 0.136 0.629 0.100 0.154
(0.006,
0.037)

(0.169,
0.214)

(0.120,
0.152)

(0.560,
0.699)

(0.079,
0.121)

(0.132,
0.176)

Semipar -0.014 0.085 0.063 0.138 0.023 0.047
(-0.028, -
0.001)

(0.063,
0.106)

(0.050,
0.076)

(0.095,
0.182)

(0.003,
0.043)

(0.031,
0.064)

Note: The table depicts the average percent correct measured relative to the baseline parametric
logit model Logit by experiment. 95% confidence intervals computed from 500 bootstrap replications
are in parentheses.

Table D-5: Average Percent Improvement in Predictive Accuracy using Percent Correct, on
the Training, Validation, and Test samples

Model Test Validation Train

Regular 0.188 0.198 0.228
(0.174, 0.202) (0.177, 0.219) (0.217, 0.238)

DT 0.149 0.211 0.325
(0.135, 0.163) (0.190, 0.232) (0.314, 0.337)

GBM 0.205 0.249 0.366
(0.190, 0.219) (0.227, 0.271) (0.354, 0.378)

RF 0.205 0.243 0.354
(0.191, 0.220) (0.222, 0.264) (0.343, 0.366)

Semipar 0.057 0.088 0.131
(0.047, 0.067) (0.075, 0.102) (0.124, 0.138)

Note: Percent correct measured relative to the baseline parametric logit model Logit. The training
sample is a random 80% of the data pre-disaster, the validation sample a random 20% of the data
pre-disaster, and the test sample data post-disaster. 95% confidence intervals computed from 500
bootstrap replications are in parentheses.
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Table D-6: Average Percent Improvement in Predictive Accuracy for Percent Correct By
Share of Destroyed Hospital

Model <10% 10-30% >30%

Regular 0.233 0.163 0.128
(0.207, 0.260) (0.145, 0.181) (0.065, 0.191)

DT 0.192 0.136 0.031
(0.166, 0.219) (0.114, 0.157) (-0.033, 0.095)

GBM 0.241 0.202 0.117
(0.214, 0.268) (0.182, 0.223) (0.056, 0.177)

RF 0.239 0.199 0.123
(0.213, 0.265) (0.180, 0.218) (0.065, 0.180)

Semipar 0.082 0.064 -0.075
(0.064, 0.100) (0.050, 0.079) (-0.123, -0.027)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates
are averaged across the experiments and broken down by the share of discharges of the destroyed
hospital in the pre-disaster period predicted using the Semipar model. 95% confidence intervals
computed from 500 bootstrap replications are in parentheses.

Table D-7: Percent Improvement in Predictive Accuracy for Percent Correct By Share of
Destroyed Hospital, For Sumter Experiment

Model <15% 15-50% 50-80% >80%

Regular -0.052 -0.024 -0.064 -0.026
(-0.081, -0.024) (-0.079, 0.031) (-0.095, -0.032) (-0.042, -0.010)

DT -0.051 0.025 -0.157 -0.074
(-0.086, -0.016) (-0.030, 0.081) (-0.199, -0.116) (-0.096, -0.051)

GBM 0.011 0.145 -0.052 -0.039
(-0.018, 0.040) (0.087, 0.202) (-0.084, -0.019) (-0.058, -0.021)

RF -0.001 0.132 -0.008 -0.008
(-0.030, 0.027) (0.079, 0.186) (-0.041, 0.024) (-0.022, 0.005)

Semipar -0.029 0.033 -0.019 -0.030
(-0.055, -0.002) (-0.007, 0.074) (-0.042, 0.004) (-0.046, -0.014)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates
are for the Sumter experiment and broken down by the share of discharges of the destroyed hospital
in the pre-disaster period predicted using the Semipar model. 95% confidence intervals computed
from 500 bootstrap replications are in parentheses.
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Table D-8: Predictive Accuracy using Percent Correct – Averaged over all Experiments –
Relative to Logit, with Model Combination Model

Model Relative Percent Correct

Comb 0.214
(0.199, 0.229)

Regular 0.188
(0.174, 0.202)

DT 0.149
(0.135, 0.163)

GBM 0.205
(0.190, 0.219)

RF 0.205
(0.191, 0.220)

Semipar 0.057
(0.047, 0.067)

Note: The table depicts the average percent correct, averaged across the different experiments,
measured relative to the baseline parametric logit model Logit. 95% confidence intervals computed
from 500 bootstrap replications are in parentheses. Comb is the Model Combination model using
weights estimated on the 20% validation sample (allowing estimated weights to vary by disaster).
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Table D-9: Predictive Accuracy using Percent Correct – By Experiment – Relative to Logit,
with Model Combination Model

Model Sumter StJohns NYU Moore Coney Bellevue

Comb 0.009 0.205 0.153 0.627 0.109 0.182
(-0.007,
0.024)

(0.182,
0.229)

(0.135,
0.170)

(0.555,
0.698)

(0.088,
0.130)

(0.158,
0.206)

Regular -0.041 0.177 0.133 0.627 0.080 0.156
(-0.057, -
0.025)

(0.155,
0.199)

(0.116,
0.149)

(0.559,
0.695)

(0.057,
0.102)

(0.132,
0.179)

DT -0.068 0.120 0.093 0.563 0.081 0.105
(-0.086, -
0.050)

(0.096,
0.143)

(0.076,
0.111)

(0.493,
0.633)

(0.056,
0.106)

(0.081,
0.129)

GBM 0.008 0.197 0.150 0.598 0.098 0.178
(-0.009,
0.024)

(0.174,
0.219)

(0.132,
0.168)

(0.526,
0.670)

(0.075,
0.120)

(0.154,
0.202)

RF 0.022 0.192 0.136 0.629 0.100 0.154
(0.006,
0.037)

(0.169,
0.214)

(0.120,
0.152)

(0.560,
0.699)

(0.079,
0.121)

(0.132,
0.176)

Semipar -0.014 0.085 0.063 0.138 0.023 0.047
(-0.028, -
0.001)

(0.063,
0.106)

(0.050,
0.076)

(0.095,
0.182)

(0.003,
0.043)

(0.031,
0.064)

Note: The table depicts the average percent correct measured relative to the baseline parametric
logit model Logit by experiment. 95% confidence intervals computed from 500 bootstrap replications
are in parentheses. Comb is the Model Combination model using weights estimated on the 20%
validation sample (allowing estimated weights to vary by disaster).

Table D-10: Percent Improvement in Predictive Accuracy for Percent Correct for Previous
Patients

Model All Patients Previous Patients

Regular 0.136 0.058
(0.125, 0.147) (0.018, 0.098)

DT 0.100 -0.012
(0.088, 0.111) (-0.054, 0.031)

GBM 0.156 0.057
(0.144, 0.167) (0.014, 0.100)

RF 0.145 0.068
(0.134, 0.156) (0.028, 0.108)

Semipar 0.055 -0.002
(0.045, 0.064) (-0.039, 0.035)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates are
for the StJohns, Coney, NYU, and Bellevue experiments, and compare all patients to the identified
set of patients that previously went to the destroyed hospital. 95% confidence intervals computed
from 500 bootstrap replications are in parentheses.
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Table D-11: Average Percent Improvement in Predictive Accuracy for Percent Correct By
Share of Destroyed Hospital, by RF Minimum Node Size

Model <10% 10-30% >30%

RF 0.239 0.199 0.123
(0.213, 0.265) (0.180, 0.218) (0.065, 0.180)

RF Small 0.237 0.199 0.121
(0.211, 0.263) (0.180, 0.218) (0.064, 0.179)

RF Large 0.171 0.144 0.118
(0.146, 0.196) (0.126, 0.162) (0.064, 0.172)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates
are averaged across the experiments and broken down by the share of discharges of the destroyed
hospital in the pre-disaster period predicted using the Semipar model. RF Large model is the
random forest model estimated using a minimum node size of 100, and the RF Small model is the
random forest model estimated using a minimum node size of 10. 95% confidence intervals computed
from 500 bootstrap replications are in parentheses.
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Table D-12: Percent Improvement in Predictive Accuracy for Percent Correct By Share of
Destroyed Hospital, For Sumter Experiment, by RF Minimum Node Size

Model <15% 15-50% 50-80% >80%

RF -0.001 0.132 -0.008 -0.008
(-0.030, 0.027) (0.079, 0.186) (-0.041, 0.024) (-0.022, 0.005)

RF Small -0.003 0.140 -0.011 -0.005
(-0.031, 0.026) (0.087, 0.193) (-0.043, 0.021) (-0.018, 0.008)

RF Large -0.096 -0.037 -0.109 -0.048
(-0.129, -0.064) (-0.088, 0.015) (-0.144, -0.073) (-0.067, -0.029)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates
are for the Sumter experiment and broken down by the share of discharges of the destroyed hospital
in the pre-disaster period predicted using the Semipar model. RF Large model is the random forest
model estimated using a minimum node size of 100, and the RF Small model is the random forest
model estimated using a minimum node size of 10. 95% confidence intervals computed from 500
bootstrap replications are in parentheses.

Table D-13: Relative Improvement in Percent Correct – Damaged Areas

Model Sumter StJohns Coney

Regular 0.014 0.078 0.179
(0.006, 0.021) (0.046, 0.111) (0.123, 0.236)

DT -0.102 0.002 0.196
(-0.122, -0.081) (-0.034, 0.037) (0.133, 0.259)

GBM -0.004 0.090 0.200
(-0.017, 0.010) (0.057, 0.123) (0.137, 0.264)

RF -0.001 0.093 0.205
(-0.013, 0.010) (0.062, 0.123) (0.146, 0.265)

Semipar 0.001 -0.001 0.100
(-0.007, 0.010) (-0.029, 0.027) (0.041, 0.160)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates
are by experiment. Only zip codes with substantial disaster damage as indicated in Section C.1 are
included. 95% confidence intervals computed from 500 bootstrap replications are in parentheses.
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Table D-14: Relative Improvement in Percent Correct – Non-Damaged Areas

Model Sumter StJohns Coney

Regular -0.098 0.225 0.039
(-0.128, -0.067) (0.196, 0.254) (0.018, 0.059)

DT -0.033 0.178 0.033
(-0.065, -0.001) (0.147, 0.209) (0.008, 0.059)

GBM 0.019 0.249 0.055
(-0.011, 0.050) (0.219, 0.279) (0.033, 0.077)

RF 0.045 0.240 0.056
(0.015, 0.075) (0.210, 0.270) (0.037, 0.075)

Semipar -0.030 0.127 -0.009
(-0.056, -0.005) (0.098, 0.155) (-0.025, 0.007)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates
are by experiment. Only zip codes without substantial disaster damage as indicated in Section C.1
are included. 95% confidence intervals computed from 500 bootstrap replications are in parentheses.

Table D-15: Average Relative Improvement in Percent Correct: Emergency and MDC

Model Pregnancy Cardiac Non-Emer Emer

Regular 0.267 0.150 0.183 0.391
(0.234, 0.299) (0.113, 0.188) (0.163, 0.204) (0.340, 0.441)

DT 0.245 0.134 0.124 0.360
(0.211, 0.279) (0.089, 0.180) (0.101, 0.146) (0.309, 0.411)

GBM 0.257 0.179 0.209 0.402
(0.224, 0.289) (0.136, 0.221) (0.188, 0.230) (0.350, 0.454)

RF 0.282 0.162 0.207 0.397
(0.249, 0.314) (0.121, 0.203) (0.186, 0.227) (0.346, 0.447)

Semipar 0.064 0.024 0.052 0.110
(0.043, 0.085) (-0.008, 0.055) (0.039, 0.064) (0.086, 0.135)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates
are averaged across experiments but separated by cardiac (MDC = 5), pregnancy (MDC = 14),
emergency, and non-emergency patients. 95% confidence intervals computed from 500 bootstrap
replications are in parentheses.
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Table D-16: Average Relative Improvement in Percent Correct: Acuity

Model Low Acuity Medium Acuity High Acuity

Regular 0.214 0.170 0.129
(0.196, 0.233) (0.148, 0.193) (0.092, 0.165)

DT 0.174 0.128 0.096
(0.153, 0.194) (0.105, 0.151) (0.056, 0.135)

GBM 0.224 0.191 0.163
(0.204, 0.244) (0.168, 0.214) (0.124, 0.202)

RF 0.227 0.191 0.149
(0.208, 0.246) (0.168, 0.214) (0.113, 0.184)

Semipar 0.073 0.037 0.052
(0.059, 0.086) (0.023, 0.051) (0.021, 0.082)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates are
averaged across experiments but separated by patients with different disease acuity (DRG weight)
divided into terciles. 95% confidence intervals computed from 500 bootstrap replications are in
parentheses.

Table D-17: Average Relative Improvement in Percent Correct: Payer Type

Model Commercial Medicare Medicaid Medicare (Separate Est)
Regular 0.208 0.160 0.317 0.117

(0.180, 0.235) (0.141, 0.179) (0.270, 0.364) (0.098, 0.136)
DT 0.181 0.121 0.284 0.139

(0.151, 0.212) (0.102, 0.140) (0.230, 0.338) (0.118, 0.160)
GBM 0.255 0.170 0.344 0.140

(0.225, 0.284) (0.151, 0.190) (0.291, 0.396) (0.120, 0.160)
RF 0.229 0.173 0.366 0.155

(0.202, 0.256) (0.154, 0.191) (0.316, 0.416) (0.137, 0.174)
Semipar 0.095 0.028 0.113 0.014

(0.074, 0.117) (0.014, 0.041) (0.080, 0.147) (0.001, 0.027)

Note: Percent correct measured relative to the baseline parametric logit model Logit. Estimates
are averaged across experiments but separated by patients with different payers. For the Medicare
(Separate Est) bars, we examine Medicare patients only and reestimate all of the models on the
Medicare only sample in order to develop predictions. 95% confidence intervals computed from 500
bootstrap replications are in parentheses.
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Table D-18: Predictive Accuracy using RMSE – Averaged over all Experiments – Relative
to Logit

Model Relative RMSE

Regular 0.0249
(0.0229, 0.0270)

DT 0.0058
(0.0034, 0.0083)

GBM 0.0367
(0.0346, 0.0387)

RF 0.0373
(0.0357, 0.0389)

Semipar 0.0020
(0.0005, 0.0035)

Note: The table depicts the average RMSE, averaged across the different experiments, measured
relative to the baseline parametric logit model Logit ; since we report percent improvement, the
negative is the change in RMSE. 95% confidence intervals computed from 500 bootstrap replications
are in parentheses.

Table D-19: Predictive Accuracy using RMSE – By Experiment – Relative to Logit

Model Sumter StJohns NYU Moore Coney Bellevue

Regular -0.0666 0.0224 0.0397 0.0880 0.0209 0.0452
(-0.0748, -
0.0585)

(0.0204,
0.0244)

(0.0370,
0.0423)

(0.0815,
0.0946)

(0.0187,
0.0230)

(0.0409,
0.0496)

DT -0.1228 0.0048 0.0273 0.0795 0.0166 0.0296
(-0.1339, -
0.1116)

(0.0023,
0.0074)

(0.0244,
0.0302)

(0.0724,
0.0865)

(0.0140,
0.0193)

(0.0250,
0.0341)

GBM -0.0146 0.0244 0.0441 0.0911 0.0272 0.0477
(-0.0212, -
0.0079)

(0.0223,
0.0266)

(0.0411,
0.0470)

(0.0836,
0.0986)

(0.0248,
0.0296)

(0.0431,
0.0522)

RF -0.0072 0.0253 0.0408 0.0927 0.0251 0.0470
(-0.0132, -
0.0013)

(0.0236,
0.0271)

(0.0385,
0.0431)

(0.0872,
0.0981)

(0.0231,
0.0272)

(0.0434,
0.0506)

Semipar -0.0340 0.0066 0.0123 0.0141 0.0045 0.0086
(-0.0411, -
0.0268)

(0.0049,
0.0084)

(0.0103,
0.0143)

(0.0103,
0.0178)

(0.0028,
0.0062)

(0.0061,
0.0111)

Note: The table depicts the average RMSE measured relative to the baseline parametric logit
model Logit by experiment; since we report percent improvement, the negative is the change in
RMSE. 95% confidence intervals computed from 500 bootstrap replications are in parentheses.
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