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C Robustness to Empirical Tests

In this section, I show that the large, substantive differences between markups estimated with
different inputs demonstrated in Section 3 are robust to several additional specifications. First,
in Appendix C.1, I show that these patterns hold estimating production functions through several
different estimation approach compared to the ACF approach in the main text. Second, in Ap-
pendix C.2, I show similar patterns estimating production functions at the subindustry or product
level. Third, in Appendix C.3, I show similar patterns estimating quantity as opposed to revenue
production functions using data on Indian homogeneous products. Finally, in Appendix C.4, I
argue that measurement error is unlikely to explain the patterns that I find.

C.1 Alternative Production Function Estimators

Following De Loecker and Warzynski (2012), I used the control function approach of Ackerberg
et al. (2015) to estimate production functions. One explanation for my findings is this estimation
approach is misspecified, which could happen for several reasons.

First, the auxiliary assumptions required for the control function approach, such as a Markov
assumption on productivity together with timing assumptions on when the firm determines its
level of inputs, may not hold. Second, Gandhi et al. (2020) show that the ACF procedure is

*Any opinions and conclusions expressed herein are those of the author and do not necessarily represent
the views of the Federal Trade Commission, or its Commissioners.
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not identified when applied to gross-output production functions.1 Third, Flynn et al. (2019),
Doraszelski and Jaumandreu (2019), and Bond et al. (2020) show how the ACF procedure can
fail to identify production function parameters with non-competitive output markets when the
dependent variable is revenue and not quantity produced. Fourth, Rovigatti and Mollisi (2018) find
that ACF estimates are quite sensitive to the initial conditions used for optimization. Empirically,
Foster et al. (2017) show that estimated output elasticities can vary substantially across different
estimation approaches.

To examine whether such issues explain my findings, I examine three additional approaches
to production function estimation. First, I use a dynamic panel approach to estimation following
Blundell and Bond (2000). Second, Flynn et al. (2019) develop a new method to estimate production
functions using a similar set of auxiliary assumptions as Ackerberg et al. (2015) together with
constant returns to scale. I use this new method to estimate translog production functions.2

Finally, I use the cost share approach assuming that productivity differences are neutral using
industry-year cost shares, as in De Loecker et al. (2020). The cost share estimates allow the
output elasticities of the industry-level production function to change over time, but do not allow
non-neutral technological differences across establishments in the same year.

Using all three methods, the time trends using different inputs estimated using (5) are very
different for all cases except for cost shares for Colombia. I depict these in Figure C.1 through
Figure C.3. In addition, after controlling for time trends, I show in Table C.1 that the labor markup
remains negatively correlated with the materials markup, with a decline in the labor markup with
a 1% increase in the materials markup ranging from −0.20% to −1% using the dynamic panel
approach, −0.17% to −7.05% using the Flynn et al. (2019) approach, and from −0.21% to −1%
for the cost share approach.

Thus, alternative production function estimators assuming neutral productivity differences can-
not explain the differing markup estimates across variable inputs that I document.

C.2 Within Industry Heterogeneity

One potential concern is that production functions vary across subindustries or products within a
broader industry. With such variation, production function estimates at the industry level may not
identify a plant’s production function parameters.

I first examine this concern by estimating production functions at the subindustry level. There
are 60 such subindustries for Chile, 82 for Colombia, 260 for Indonesia, 19 for the US (at NAICS
3 digit level, i.e. similar to the baseline industry definition for the other datasets), and 292 for
Southern Europe. For India, industry definitions vary over time; there are 764 subindustries in the

1See Bond and Söderbom (2005) for an early critique in this vein. Ackerberg et al. (2015) state that “we
would not suggest applying our procedure to gross output production functions that are not Leontief in the
intermediate inputs”.

2This approach does not converge for one industry for Chile, Colombia, and Indonesia, and two industries
for India for the labor and materials specification, as well as one industry for Indonesia, seven industries for
India, and two industries for Southern Europe in the composite variable input specification.
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Table C.1 Relationship between Markup Estimates: Alternative Estimators

Dataset Dynamic Panel FGT CostShare Ind CostShare SubInd

Chile -0.25 -0.69 -0.24 -0.20
(0.015) (0.018) (0.015) (0.014)

Colombia -0.65 -1.06 -0.65 -0.61
(0.008) (0.020) (0.008) (0.009)

India -0.89 -0.17 -0.89 -0.66
(0.008) (0.007) (0.008) (0.008)

Indonesia -0.70 -0.82 -0.51 0.02
(0.011) (0.020) (0.010) (0.016)

US -0.20 -0.18 -0.21 -0.21
(0.021) (0.032) (0.021) (0.022)

S Europe -0.55 -0.83 -0.55 -0.50
(0.003) (0.006) (0.003) (0.003)

Retailer -1.00 -7.05 -1.00 -1.00
(0.055) (0.151) (0.055) (0.055)

Note: Estimates based on (6) where the labor markup is the dependent variable and materials
markup the independent variable. Columns labeled Dynamic Panel are markups based on Blundell
and Bond (2000), and labeled FGT based on Flynn et al. (2019), as described in the text. Columns
labeled CostShare Ind are markups based on industry-year level cost shares, and CostShare SubInd
are markups based on subindustry-year level cost shares, as described in the text. Standard errors
are clustered at the establishment level.
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Figure C.1 Markup Time Trends using Dynamic Panel Estimates
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.3



Figure C.2 Markup Time Trends using Flynn, Gandhi, Traina Estimates

(a) Chile

0

20

40

60

80

P
er

ce
nt

 C
ha

ng
e

1980 1983 1986 1989 1992 1995

Year

Labor Materials Composite Input

(b) Colombia

-20

-10

0

10

20

P
er

ce
nt

 C
ha

ng
e

1978 1981 1984 1987 1990

Year

Labor Materials Composite Input

(c) India

-40

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

1998 2002 2006 2010 2014

Year

Labor Materials Composite Input

(d) Indonesia

-25

-20

-15

-10

-5

0

P
er

ce
nt

 C
ha

ng
e

1991 1994 1997 2000

Year

Labor Materials Composite Input

(e) US

-40

-20

0

20

40

P
er

ce
nt

 C
ha

ng
e

1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

Labor Materials Composite Input

(f) Southern Europe

-10

-5

0

5

P
er

ce
nt

 C
ha

ng
e

2011 2014 2017 2020

Year

Labor Materials Composite Input

Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.4



Figure C.3 Markup Time Trends using Industry Cost Share Estimates

(a) Chile

-10

0

10

20

P
er

ce
nt

 C
ha

ng
e

1980 1983 1986 1989 1992 1995

Year

Labor Materials Composite Input

(b) Colombia

-15

-10

-5

0

5

P
er

ce
nt

 C
ha

ng
e

1978 1981 1984 1987 1990

Year

Labor Materials Composite Input

(c) India

-20

-15

-10

-5

0

5

P
er

ce
nt

 C
ha

ng
e

1998 2002 2006 2010 2014

Year

Labor Materials Composite Input

(d) Indonesia

0

10

20

30

P
er

ce
nt

 C
ha

ng
e

1991 1994 1997 2000

Year

Labor Materials Composite Input

(e) US

-40

-20

0

20

40

P
er

ce
nt

 C
ha

ng
e

1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

Labor Materials Composite Input

(f) Southern Europe

-1

0

1

2

3

P
er

ce
nt

 C
ha

ng
e

2011 2014 2017 2020

Year

Labor Materials Composite Input

Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.5



Figure C.4 Markup Time Trends using Subindustry Cost Share Estimates
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.6



period before 2004, 684 between 2004 and 2007, and 586 in the period after 2007.3

I estimate production functions at the subindustry level using subindustry-year cost shares.
Time trends, reported in Figure C.4, continue to be very different across inputs. The magnitude
of the negative cross-sectional correlation between the labor and materials markup is smaller at
the subindustry level; the labor markup is uncorrelated with the materials markup for Indonesia,
and is negatively correlated with the materials markup in the other datasets, with a 1% increase in
the materials markup decreasing the labor markup by −0.20% to −1%. See the CostShare SubInd
column of Table C.1.

For India, I also have access to product-level data and so can estimate product level production
functions. I only include manufacturing plants that report only one product within a given year;
in 2014, this dataset includes about 25,000 plants and 3,000 products. I then estimate production
functions at the product-year level using product-year cost shares. The labor markup is negatively
correlated with the materials markup, with a decline in the labor markup of −0.45% with a 1%
increase in the materials markup using product-year cost shares, compared to −0.85% estimating
production functions using industry-year cost shares on the same data.

Thus, estimating subindustry or product level production functions reduces, but does not elim-
inate, the negative cross-sectional correlation between markup estimates that I document.

C.3 Revenue Production Functions

Economists typically only have data on revenue, and not output, and so estimate revenue production
functions. However, with imperfect competition, the markup is an additional unobservable in
the revenue production. With imperfect competition, the control function estimator applied to
revenue production functions may fail to identify production function parameters (Flynn et al.,
2019; Doraszelski and Jaumandreu, 2019).

I examine this issue by using data on ten Indian homogenous products for which I have the
quantity produced and price of the good, in the spirit of Foster et al. (2008).4 For these products,
I estimate product-level quantity production functions using the control function estimator. I only
include plants for which at least 75% of their revenue comes from one of these products. The
labor markup and materials markup are negatively correlated for these products, with a decline
in the labor markup of −0.42% and −0.83% with a 1% increase in the materials markup using
Cobb-Douglas and translog production functions. Thus, problems with revenue as opposed To
production functions alone cannot explain my findings.

3For Chile and Colombia, the subindustry is defined at the four digit ISIC (Rev.2) level, for Indonesia at
the five digit ISIC (Rev.2) level, and for India at the five digit NIC 98 level before 2004, five digit NIC 04
level between 2004 and 2007, and five digit NIC 08 level after 2007.

4I describe the construction of these products in Appendix G.7; they are Biri Cigarettes, Black Tea,
Corrugated Sheet Boxes, Matches, Portland Cement, Processed Milk, Refined Sugar, Parboiled Non-Basmati
Rice, Raw Non-Basmati Rice, and Shelled Cashew Nuts.
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C.4 Measurement Error

Another potential concern is measurement error in data on inputs due to survey collection. For
example, manufacturing plants may not respond to all survey questions (White et al., 2016). How-
ever, the retailer’s data is based on the internal records of the firm, and so should have very little
measurement error compared to survey data. I find similar patterns using the retailer’s data as I
did in the manufacturing datasets.

Measurement error may be more of an issue for smaller, less sophisticated plants compared to
large plants. All of my baseline estimates do not weight by size. I examine sales and cost weights,
as in De Loecker et al. (2020) and Edmond et al. (2018) in Appendix E.4, and find qualitatively
similar findings to the unweighted results.

Finally, for the Cobb-Douglas production function, the negative correlation between the labor
markup and materials markup is driven by a negative correlation between the labor share of revenue
and the materials share of revenue, as the output elasticities are industry-specific constants. For
measurement error to account for this correlation, measurement errors in payroll would have to
be negatively correlated with measurement errors in materials expenditure. It is unclear why this
would be the case, except for the US Compustat data where they are functionally related.

D Markup Stylized Facts

I now examine several stylized facts, including how markups correlate with size, competition, ex-
porting behavior, and an alternative profit share based markup. For each variable Zit, I estimate
the following regression specification:

log(µXit ) = α+ βZit + γt + δn + εit (D.1)

where µXit is the markup estimate for establishment i in year t using input X, and γt and δn are
year and industry fixed effects.

Estimates of all of the stylized facts vary in sign and magnitude across inputs and datasets using
both the Cobb-Douglas and translog control function estimators, and often conflict with predictions
from theory.

D.1 Size

Multiple theories of variable markups (Atkeson and Burstein, 2008; Melitz and Ottaviano, 2008)
predict markups increasing in firm size. I examine this prediction by estimating (D.1) regressing
markups on the logarithm of deflated sales, and report these estimates in Table D.1. With the
Cobb-Douglas estimates, markups estimated using labor are substantially higher for bigger firms,
while markups estimated using materials are negatively correlated with firm size in all datasets.
Using the translog estimates, this correlation is negative for materials for six of seven datasets and
negative for labor for four datasets.
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Table D.1 Markups and Sales

Labor Materials Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Chile 0.12 -0.03 -0.02 -0.00 0.01 0.00
(0.005) (0.004) (0.002) (0.001) (0.001) (0.001)

Colombia 0.16 -0.01 -0.07 -0.00 0.00 0.01
(0.004) (0.003) (0.002) (0.001) (0.001) (0.001)

India 0.21 0.05 -0.02 -0.00 0.01 0.01
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Indonesia 0.20 0.04 -0.06 -0.03 0.01 0.01
(0.003) (0.003) (0.001) (0.001) (0.000) (0.000)

US 0.05 -0.01 -0.01 0.06 0.06 0.05
(0.007) (0.009) (0.008) (0.007) (0.002) (0.003)

S Europe 0.13 -0.03 -0.13 -0.05 -0.01 -0.01
(0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

Retailer 0.31 0.09 -0.01 -0.02 0.03 -0.04
(0.004) (0.008) (0.000) (0.001) (0.000) (0.001)

Note: Estimates are based on (D.1) where the independent variable is deflated sales. Standard
errors are clustered at the establishment level.

D.2 Exporting

Atkeson and Burstein (2008) and Melitz and Ottaviano (2008) also predict that exporters, being
more productive than the typical firm, will have larger markups; De Loecker and Warzynski (2012)
focused on this question. I examine this question using an indicator variable for whether the es-
tablishment exports using the manufacturing census datasets.5 Table D.2 contains these estimates.
The correlation of markups estimated using the Cobb-Douglas estimator with exporting are positive
for Chile, Colombia, and Indonesia using labor and for Colombia and Indonesia using materials.
Using the translog estimates, this correlation is negative for labor for two of the four datasets, and
positive albeit with a small magnitude for materials in all of the datasets.

D.3 Profit Share Markups

An alternative method to estimate markups has been to use data on profits to measure the markup.
Returns to scale (RTS) are equal to the markup multiplied by one minus the share of profits sπ, or
RTS = µ(1−sπ). Thus, given constant returns to scale, one can invert the profit share to estimate
the markup. We would expect this profit share based markup to be highly correlated with the
production approach based markup.

5For Chile, I only have exporter information for plants from 1990; for India, for plants from 2008.
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Table D.2 Markups and Exporting

Labor Materials Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Chile 0.07 -0.11 0.04 0.03 0.05 0.04
(0.018) (0.016) (0.007) (0.006) (0.003) (0.003)

Colombia 0.17 0.02 -0.04 0.03 0.04 0.04
(0.016) (0.014) (0.009) (0.004) (0.003) (0.003)

India -0.03 -0.15 0.01 0.02 0.03 0.02
(0.011) (0.008) (0.002) (0.002) (0.001) (0.001)

Indonesia 0.28 0.05 -0.02 0.01 0.03 0.03
(0.012) (0.011) (0.004) (0.004) (0.001) (0.001)

Note: Estimates are based on (D.1) where the independent variable is an indicator for whether
the establishment exports. Standard errors are clustered at the establishment level.

I examine how production based markups correlate with the profit share based markup, esti-
mating the profit share in two ways. First, as in Gutiérrez and Philippon (2016), I calculate the
profit based markup as sales divided by total costs, where capital costs are measured through a
user cost approach as the multiple of capital stocks and rental rates. Second, for the retailer, I
have data on accounting profits measured as earnings before interest and taxes (EBIT) and so can
calculate a profit based markup as sales divided by sales minus profits.

I then regress the log production based markup on the log profit share based markup using
(D.1). I report these estimates in Table D.3. Using the Cobb-Douglas estimates, this correlation is
negative for materials for three of eight datasets and negative for labor for four of eight datasets.
Using the translog estimates, this correlation is negative for materials for three of eight datasets
and negative for labor for seven of eight datasets.

D.4 Competition

One explanation for high markups is less competition. I examine how markups correlate with
competition for the retailer using its own classification of the degree of competition. The retailer
classifies each store as facing either Low, Medium, or High competition, and records the number
of competitors for each store. I examine the competition band in this section in Table D.4, and a
discretized number of competitors in Table D.5.

With the Cobb-Douglas estimates, labor markups are slightly lower with mroe competition, and
materials markups are slightly higher. With the translog estimates, labor markups are substantially
(9%) lower on average with competition, while materials markups rise slightly.

Here, theory is not as clear cut. On the one hand, we might expect from canonical models of
competition that markups would decline with competition. On the other hand, uniform or near-
uniform pricing by many large retailers (DellaVigna and Gentzkow, 2017) might lead to the same
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Table D.3 Production Markup Estimates and Profit Based Markup

Labor Materials Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Chile -0.03 -0.06 0.37 0.35 0.09 0.08
(0.016) (0.014) (0.010) (0.009) (0.003) (0.003)

Colombia -0.15 -0.16 0.01 0.05 -0.00 0.01
(0.018) (0.014) (0.013) (0.007) (0.004) (0.003)

India 0.21 -0.05 0.15 0.18 0.02 -0.01
(0.010) (0.008) (0.003) (0.004) (0.001) (0.001)

Indonesia 0.06 -0.09 -0.12 -0.09 -0.03 -0.04
(0.011) (0.011) (0.006) (0.005) (0.002) (0.002)

US -0.01 -0.27 0.77 0.72 0.33 0.31
(0.040) (0.042) (0.055) (0.040) (0.018) (0.019)

S Europe -0.41 -0.24 0.12 0.04 0.00 0.00
(0.007) (0.005) (0.006) (0.002) (0.001) (0.001)

Retailer 1.81 -0.09 -0.08 -0.01 0.15 -0.17
(0.027) (0.041) (0.003) (0.003) (0.003) (0.003)

Retailer (EBIT) 2.00 0.85 -0.09 -0.09 0.16 -0.16
(0.028) (0.045) (0.003) (0.004) (0.003) (0.003)

Note: Estimates are based on (D.1) where the independent variable is the profit share based
markup. Standard errors are clustered at the establishment level. All profit based markups are
through a factor cost based profit measure, except for the last row which is an accounting profit
(EBIT) based measure.
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markups across stores facing different competition, and the retailer’s own data shows that it uses
only a small number of pricing zones.

Table D.4 Markups and Competition

Labor Materials Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Medium -0.004 -0.016 0.000 -0.001 0.001 -0.004
(0.004) (0.005) (0.000) (0.000) (0.000) (0.000)

High -0.003 -0.088 0.004 0.002 0.006 -0.014
(0.006) (0.009) (0.001) (0.001) (0.000) (0.001)

Note: Estimates are based on (D.1) where the independent variable is the company-derived
measure of competition; all estimates are relative to a retail store facing Low Competition. Standard
errors are clustered at the establishment level.

Table D.5 Markup and Number of Competitors

Labor Materials Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

2 0.006 0.024 -0.001 -0.003 0.000 -0.001
(0.007) (0.009) (0.001) (0.001) (0.001) (0.001)

3 -0.002 0.013 -0.000 -0.002 0.000 -0.001
(0.007) (0.009) (0.001) (0.001) (0.001) (0.001)

4 -0.002 0.007 -0.001 -0.003 0.001 -0.004
(0.007) (0.009) (0.001) (0.001) (0.001) (0.001)

5-9 -0.005 -0.031 0.001 -0.002 0.003 -0.007
(0.006) (0.008) (0.001) (0.001) (0.000) (0.001)

10+ -0.003 -0.085 0.004 0.001 0.007 -0.015
(0.009) (0.013) (0.001) (0.001) (0.001) (0.001)

Note: Estimates are based on (D.1) and are relative to a retail store with 0-1 competitors. Standard
errors are clustered at the establishment level.

E Additional Empirical Results

E.1 Trends over Time

In Figure E.1, I depict aggregate markup trends based on labor, materials, or the combined input of
both as flexible inputs estimated using Cobb-Douglas production functions. In Figure E.2, I depict
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aggregate markup trends based on labor, raw materials, or energy as flexible inputs estimated using
Cobb-Douglas production functions.

E.2 Markup Dispersion

In Table E.1 and Table E.2, I report the 75/25 ratio and 90/10 ratio of markup estimates.

Table E.1 75/25 Ratio of Markup Estimates

Labor Materials Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Chile 2.68 2.06 1.41 1.32 1.16 1.15
(0.009) (0.010) (0.003) (0.003) (0.001) (0.001)

Colombia 2.69 1.87 1.63 1.24 1.14 1.14
(0.013) (0.006) (0.005) (0.001) (0.001) (0.001)

India 4.25 3.16 1.32 1.25 1.13 1.12
(0.011) (0.005) (0.001) (0.000) (0.000) (0.000)

Indonesia 3.82 2.65 1.55 1.37 1.12 1.13
(0.022) (0.010) (0.002) (0.002) (0.000) (0.000)

US 2.45 4.04 3.81 1.93 1.29 1.54
(0.018) (0.051) (0.436) (0.014) (0.003) (0.008)

S Europe 2.37 1.74 1.65 1.23 1.10 1.10
(0.003) (0.001) (0.001) (0.000) (0.000) (0.000)

Retailer 1.28 1.35 1.03 1.03 1.02 1.03
(0.002) (0.003) (0.000) (0.000) (0.000) (0.000)

Note: Estimates use all establishments and years. Standard errors are based on 20 bootstrap
simulations. For India, these estimates ignore the sample weights.

E.3 Average Markups

Under the production approach, the average markup should be the same using different flexible
inputs. I test this prediction by estimating the average markup across all establishments using
different flexible inputs. I find similar average markups in some, but not all, of the datasets.

Using all the datasets, I report the ratio of the average labor markup to the average materials
markup in the first two columns of Table E.3. The average labor markup is 9% higher than the
average materials markup for Chile, 18% higher for Colombia, 98% higher for India, 72% higher for
Indonesia, 137% higher for the US, 19% higher for Southern Europe, and 106% higher for the retailer
under the Cobb-Douglas estimates. Under the translog estimates, the average labor markup is 50%
higher than the average materials markup for Chile, 5% lower for Colombia, 46% higher for India,
69% higher for Indonesia, 124% higher for the US, 1% lower for Southern Europe, and 5% lower
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Figure E.1 Markup Time Trends using Cobb-Douglas Estimates
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.14



Figure E.2 Markup Time Trends using Cobb-Douglas Estimates, with Energy
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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Table E.2 90/10 Ratio of Markup Estimates

Labor Materials Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Chile 6.25 4.04 2.08 1.81 1.33 1.31
(0.032) (0.020) (0.004) (0.006) (0.002) (0.001)

Colombia 7.87 7.43 2.71 1.68 1.31 1.30
(0.076) (0.304) (0.010) (0.006) (0.001) (0.001)

India 15.81 10.08 1.75 1.58 1.27 1.27
(0.063) (0.044) (0.001) (0.001) (0.000) (0.000)

Indonesia 17.05 8.16 2.34 1.97 1.25 1.28
(0.142) (0.061) (0.005) (0.004) (0.001) (0.001)

US 6.42 14.51 -15.82 4.84 1.62 2.66
(0.093) (0.201) (0.354) (0.067) (0.006) (0.013)

S Europe 5.45 3.13 2.75 1.49 1.22 1.21
(0.011) (0.004) (0.002) (0.001) (0.000) (0.000)

Retailer 1.59 1.76 1.05 1.06 1.04 1.05
(0.004) (0.006) (0.000) (0.000) (0.000) (0.000)

Note: Estimates use all establishments and years. Standard errors are based on 20 bootstrap
simulations. For India, these estimates ignore the sample weights.

for the retailer. Thus, the average markups are close to each other for Colombia, Southern Europe,
and the retailer using the translog estimates, and for Chile, Colombia, and Southern Europe using
the Cobb-Douglas estimates.

E.4 Weighted Estimates

De Loecker et al. (2020) weight markups by sales, while Edmond et al. (2018) argue that cost
weights are the right benchmark for welfare calculations. In this section, I weight all observations
using sales weights (the plant’s share of total sales in the year), or cost weights (the plant’s share
of total costs in the year). I then report the ratio of average markups, trends over time, and
correlations between markups, using either labor, materials, or the combined variable input to
compute markups. In some of the manufacturing datasets, a few plants have very large sales
and cost shares (for example, petroleum refineries in India), so weighted estimates can differ from
unweighted estimates substantially. Nevertheless, I continue to find negative correlations between
labor markups and materials markups and different trends over time after weighting using sales or
cost weights.
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Table E.3 Ratio of Average Markup Estimates

Labor/Materials Labor/Composite Input Materials/Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Chile 1.09 1.50 1.30 1.63 1.19 1.09
(0.012) (0.012) (0.012) (0.012) (0.003) (0.002)

Colombia 1.18 0.95 1.53 1.02 1.30 1.08
(0.016) (0.015) (0.016) (0.013) (0.010) (0.005)

India 1.98 1.46 2.17 1.56 1.10 1.07
(0.008) (0.005) (0.008) (0.005) (0.001) (0.001)

Indonesia 1.72 1.69 2.00 1.89 1.17 1.11
(0.018) (0.019) (0.019) (0.021) (0.003) (0.002)

US 2.37 2.24 1.40 2.05 0.59 0.92
(0.125) (0.105) (0.035) (0.090) (0.023) (0.034)

S Europe 1.19 0.99 1.56 1.08 1.31 1.09
(0.006) (0.002) (0.004) (0.002) (0.005) (0.002)

Retailer 2.06 0.95 1.32 0.95 0.64 1.00
(0.004) (0.002) (0.002) (0.002) (0.000) (0.000)

Note: Estimates are the ratio of the average markup between two flexible inputs across all
establishments and years, so Labor/Materials indicates the ratio of the average labor markup to
average materials markup. Standard errors are clustered at the establishment level.
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Figure E.3 Markup Time Trends using Cobb-Douglas Estimates, Sales Weighted
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with sales weights.
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Figure E.4 Markup Time Trends using Translog Estimates, Sales Weighted
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with sales weights.

19



Table E.4 Relationship between Markup Estimates: Sales Weighted

Dataset Cobb-Douglas Translog

Chile -0.83 -0.30
(0.060) (0.076)

Colombia -1.37 -0.09
(0.087) (0.199)

India -1.89 -0.73
(0.127) (0.117)

Indonesia -0.65 -0.30
(0.094) (0.111)

US -0.21 -0.61
(0.070) (0.060)

S Europe -1.47 -0.20
(0.036) (0.116)

Retailer -7.06 -9.70
(0.152) (0.121)

Note: Estimates based on (6) where the labor markup is the dependent variable and materials
markup the independent variable. Standard errors are clustered at the establishment level. Estimates
weighted with sales weights.

Table E.5 Relationship between Markup Estimates: Cost Weighted

Dataset Cobb-Douglas Translog

Chile -0.83 -0.29
(0.059) (0.069)

Colombia -1.42 -0.08
(0.068) (0.161)

India -1.98 -0.77
(0.120) (0.112)

Indonesia -0.86 -0.46
(0.116) (0.126)

US -0.23 -0.64
(0.074) (0.062)

S Europe -1.53 -0.18
(0.038) (0.131)

Retailer -7.07 -9.71
(0.155) (0.119)

Note: Estimates based on (6) where the labor markup is the dependent variable and materials
markup the independent variable. Standard errors are clustered at the establishment level. Estimates
weighted with cost weights.
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Figure E.5 Markup Time Trends using Cobb-Douglas Estimates, Cost Weighted
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with cost weights.
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Figure E.6 Markup Time Trends using Translog Estimates, Cost Weighted
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
Estimates weighted with cost weights.
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F Monte Carlo

Through a Monte Carlo exercise, I show that labor augmenting productivity differences can cause
a negative correlation between markups estimated using labor and materials as flexible inputs.

I simulate an economy in which markups and labor augmenting productivity differences vary
across plants. In this economy, 1000 cost minimizing plants produce for 10 years. All plants have
a common CES production function, as in (8), with substitution elasticity 0.5. The logarithm
of neutral productivity A and labor augmenting productivity B evolve over time through an au-
toregressive process with a productivity persistence parameter of 0.9 and jointly normal shocks.
Productivity is thus distributed as a joint lognormal. I then calibrate the parameters of this log-
normal to match moments from data on factor shares and productivity from US manufacturing
plants.6

Plants face CES demand with an elasticity of demand drawn from a uniform distribution be-
tween 2 and 6. Because demand is CES, the markup plants choose is a simple inversion of the
demand elasticity; markups range between 1.2 and 2. Plants then set all inputs flexibly given the
factor prices they face and their productivity draws.

I estimate the relationship between markup estimates using the following regressions:

log(µLit) = α+ β log(µMit ) + εit (F.1)

log(µTrueit ) = α+ β log(µXit ) + εit. (F.2)

First, I compare the labor markup to the materials markup using (F.1). Second, I examine how the
true markup based on the demand elasticity the plant faces is correlated with different production
based markups for input X using (F.2). Here, the (logged) true markup is the dependent variable
and the labor, materials, or composite markup the independent variable.

In Table F.1, I report the average of β across 200 Monte Carlo simulations, with standard
deviations across simulations in parentheses. I examine Cobb Douglas and translog control function
estimators, for which B is assumed not to vary across plants.7

As I found in Section 3, labor markups are negatively correlated with materials markups. A
1% increase in the materials markup decreases the labor markup on average by 1.15% using the

6I initialize productivities in their first year to the stationary distribution given the persistence process.
I normalize the mean of the stationary distribution of logA to 1, and calibrate the mean of the stationary
distribution of logB and the variances and covariance of logA and logB through moment-matching. I match
the following six moments: an aggregate capital share of capital and labor cost of 0.3, a value of the weighted
variance of capital shares of capital and labor of 0.1, and the aggregate materials share of total cost of 0.55
(all from Oberfield and Raval (2021)) the 90-10 ratio of marginal cost across plants to 2.7 (from Syverson
(2004)), the coefficient of a regression of the capital cost to labor cost ratio on the log of the plant’s total cost
of capital and labor (weighting by the plant’s total cost of capital and labor) of 0.08 from Raval (2019), and
a log of total industry cost of log(10, 000) (to keep the same size industry across simulations). Distribution
parameters are 0.1 for capital, 0.3 for labor, and 0.6 for materials.

7The Cobb Douglas estimates are based on 114 of 200 simulations for labor and materials, and 197 of
200 simulations for the composite input, as in some simulations the coefficient on labor or materials was
negative.
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Cobb-Douglas control function estimator and 0.08% using the translog control function estimator.
In addition, both labor and materials markups are only slightly correlated with the true markup

using the control function estimators; on average, the true markup is only 0.12% higher using the
Cobb-Douglas estimator, or 0.05% higher using the translog estimator, after a 1% increase in the
labor markup. The true markup is 0.36% higher using the Cobb-Douglas estimator, or 0.03% lower
using the translog estimator, after a 1% increase in the materials markup.

Table F.1 Relationship between Markup Estimates: Monte Carlo Estimates

Estimator Labor on Materials True Markup on
Labor

True Markup on
Materials

True Markup on
Composite Input

Cobb-Douglas CF -1.15 0.12 0.36 0.79
(0.97) (0.16) (0.33) (0.23)

Translog CF -0.08 0.05 -0.03 0.27
(0.33) (0.10) (0.02) (0.21)

Note: Estimates based on 200 Monte Carlo simulations, using (F.1) and (F.2). For example,
True Markup on Materials indicates a regression where the true markup is the dependent variable
and materials markup the independent variable. True markup is the actual markup set by the firm
based on its demand elasticity in the Monte Carlo simulations. Markup estimates are based on ACF
control function estimators.

In all specifications, the composite input markup is more highly correlated with the true markup
than labor or materials, as might be expected as the composite input combines two negatively
correlated inputs. However, a 1% increase in the composite input markup increases the true markup
by only 0.79% using the Cobb-Douglas estimates, and 0.27% using the translog estimates.

G Data Notes

In this section, I describe how I construct the main data variables for each dataset.

G.1 Datasets

The first dataset is the Chilean annual census of the manufacturing sector, Encuesta Nacional Indus-
trial Anual (ENIA), spanning the years 1979 to 1996. This data covers all Chilean manufacturing
plants with at least 10 employees, and so contains about 5,000 plants per year.

The second dataset is the annual Colombian Manufacturing census provided by the Departa-
mento Administrativo Nacional de Estadistica between 1981 and 1991. This data contains about
7,000 plants per year. Plants with less than 10 employees are excluded in 1983 and 1984.

The third dataset is India’s Annual Survey of Industries (ASI) from 1998 to 2014. Manufacturing
establishments with over 100 workers are always sampled, while a rotating sample of one-third of
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all plants with at least ten workers (twenty if without power) are also sampled. I thus weight by
the provided sample weights in samples using the Indian data. This data contains about 30,000
plants per year.

The fourth dataset is the Manufacturing Survey of Large and Medium-Sized Firms (Survei
Industri, SI) from 1991 to 2000. This dataset is an annual census of all manufacturing firms in
Indonesia with 20 or more employees, and contains about 14,000 firms per year.

The fifth dataset is Compustat, which comprises US public firms. I restrict the data to include
only firms reporting a NAICS code for manufacturing between 1970 and 2010. This data contains
about 500 firms per year, increasing from about 200 per year at the beginning of the sample to
1,000 per year at the end of the sample.

The sixth dataset is the ORBIS data from Bureau Van Dijk for manufacturing firms, defined as
NACE Rev. 2 industry codes between 10 and 33, located in Italy, Spain, or Portugal (“Southern
Europe”). The ORBIS data includes both public and private firms. Because my access to this data
only includes firms active when I accessed the data, and up to 10 years of records for each firm, I
only include the balanced panel of firms present in all years from 2011 to 2020. After data cleaning,
this data contains about 100,000 firms per year, with about 30,000 firms per year in Spain, 54,000
firms per year in Italy, and 13,000 firms per year in Portugal.

I then compare total turnover and employment in this balanced panel to total turnover and
employment for the manufacturing sector available from Eurostat. In 2019, the balanced panel com-
prises 67% of turnover and 56% of employment for Spain, 69% of turnover and 62% of employment
for Italy, and 78% of turnover and 65% of employment for Portugal.8

The seventh dataset is store-level data from a major US nation-wide retailer for three years,
comprising thousands of stores across the United States.

G.2 Capital

Capital costs are the most involved variable to construct. For each dataset, a capital stock is
constructed for each type of capital available. Capital services is the sum of the stock of each type
multiplied by its rental rate plus rental payments. This provides an approximation to a Divisia
index for capital given different types of capital. See Diewert and Lawrence (2000) and Harper
et al. (1989) for details on capital rental rates and aggregation.

For all datasets except the US, the capital rental rate is the sum of the real interest rate R
and depreciation rate δ for that type of capital. I base the real interest rate on private sector
lending rates reported in the World Bank World Development Indicators, which come from the

8Unlike the balanced panel, the unbalanced panel comprises a much lower share of turnover and em-
ployment at the beginning of the sample compared to the end of the sample. In 2011, the balanced panel
comprises 65% of turnover and 51% of employment for Spain, 61% of turnover and 54% of employment for
Italy, and 75% of turnover and 58% of employment for Portugal. The unbalanced panel is 93% of turnover
and 89% of employment for Spain, 95% of turnover and 94% of employment for Italy, and 101% of turnover
and 89% of employment for Portugal in 2019, and 78% of turnover and 69% of employment for Spain, 70%
of turnover and 62% of employment for Italy, and 91% of turnover and 75% of employment for Portugal in
2011.
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IMF Financial Statistics, for each country. This real interest rate is constructed as the private
sector lending rate adjusted for inflation using the change in the GDP deflator. Thus, real interest
rate R is defined as R = it−πt

1+πt
for lending rate it and inflation rate πt.

I average this real interest rate over the sample period, so that, since capital rental rates are
constant over time, no variation in the capital stock over time is due to changing rental rates.9

For depreciation rates, I match the depreciation rates calculated for US industries to the equiv-
alent industries in each country for structures and equipment. For transportation, I set the depre-
ciation rate to 0.19.10

For the US, I use rental rates developed in Oberfield and Raval (2021) at the 3 digit NAICS
level based on an external real rate of 3.5%, which account for the tax treatment of investment.
Because these rental rates are separate for structures and equipment, I aggregate them using an
average of the current and lag share of equipment in total capital for the industry from the NBER
Productivity Database.

Across datasets, there are some differences in the construction of capital stocks. For Chile, I
use end of year capital stocks constructed by Greenstreet (2007). Greenstreet (2007) constructed
capital stocks for three types of capital – structures, equipment, and transportation – using a
permanent inventory type procedure using data on capital depreciation.

For Colombia, India, and Indonesia, I construct asset-specific capital stocks using a perpetual
inventory method for each type of capital. For Colombia, there are four types of capital: land,
structures, equipment (combining office equipment and machinery), and transportation. For India,
there are six types of capital: land, structures, equipment, transportation, computers, and other
(including pollution equipment). For Indonesia, there are five types of capital: land, structures,
equipment, other capital (for which I use the equipment deflator), and transportation.11

For each asset type, I construct a perpetual inventory measure of capital starting with the
first year reporting a positive value of the book value of capital. I also construct a backwards
perpetual inventory measure of capital to create capital stocks for plants missing capital stocks
using the forward perpetual inventory calculation.12 I drop observations with zero or negative
capital services for equipment or for total capital.

For the US, I have data on the aggregate net book value of plant, property, and equipment and

9For Chile and Colombia, the real interest rate series starts in 1985 and 1986, respectively, so I use interest
rates starting from these dates. For Southern Europe, the World Development Indicators only include the
real interest rate for Italy, so I use the averaged Italian rate for Spain and Portugal as well.

10The US depreciation rates are based on NIPA data on depreciation rates of assets; I then use asset-
industry capital tables to construct depreciation rates for structures and equipment for each industry. In-
dustries for the US are at the 2 digit SIC level. The US light truck depreciation rate is 19%. For the US and
Southern Europe, I construct an average depreciation rate at the 3 digit NAICS level aggregating deprecia-
tion rates of structures and equipment using an average of the current and lag share of equipment in total
capital from the NBER Productivity Database. I match by year for the US and use the 2010 depreciation
rates for Southern Europe.

11For other capital, I use the depreciation rate and deflator for equipment. For computers, I use a
depreciation rate of 31.19%, the US depreciation rate for computer equipment.

12For Indonesia, only total capital and total investment are available in 1996. I thus restart the perpetual
inventory capital measure in 1997, and the backwards PI measure in 1995.
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yearly capital expenditures, but neither capital nor investment measures are broken out by type
of asset. I first convert historical cost tangible fixed assets to current cost fixed assets using BEA
historical cost to current cost deflators at the 3 digit NAICS level. I then construct a perpetual
inventory measure of capital starting with the first year reporting a positive value of the book value
of capital.

For Southern Europe, only the book value of tangible fixed assets is available, so I use the book
value as the measure of capital.

Capital deflators for Chile and Colombia are at the 3 digit ISIC level, and I have separate
deflators for structures, equipment, and transportation. For India, Indonesia, the US, and Southern
Europe, I use a general capital deflator: at the 4 digit ISIC level for Indonesia, at the aggregate level
for India, at the 3 digit NAICS level for the US (aggregated via a Tornqvist index with investment
weights from 4 digit NAICS deflators available from the NBER productivity database), and at the
2 digit NACE level for Southern Europe.13

For the retailer, I have better data on capital than in the manufacturing datasets – the history
of all investments by store going back to the early 1980s separately for land, structures, and
equipment. I use this data to construct a perpetual inventory measure of capital for each type of
capital. I obtain capital deflators and rental prices for each type of capital from the BLS Multifactor
Productivity program, constructed for the retail trade industry.

Nominal capital services are then the sum of the real capital stock of each asset type multiplied
by the appropriate deflator and capital rental rate, plus rent. Real capital services are the sum
of the real capital stock of each asset type multiplied by the appropriate capital rental rate, plus
deflated rent.14

G.3 Labor

For Chile, Colombia, Indonesia, US, and Southern Europe, I use the total number of workers as
my measure of labor. For India, I use the total number of days worked by all workers, while for
the retailer, I use the total number of hours worked by all workers.

For labor costs, I use the sum of total salaries and benefits for all of the datasets except the
US. For the US, data on wages are only available for about 10% of the sample. I thus follow
Keller and Yeaple (2009) and Demirer (2020) and set labor costs as the number of employees
multiplied by an average wage for the 3 digit NAICS industry. I measure the average wage from
the NBER productivity database as payroll divided by employment aggregated to the 3 digit NAICS

13For Southern Europe, I obtain capital deflators from Eurostat. These deflators are at the country level
with separate deflators for Spain, Portugal, and Italy. For Spain, these deflators are at the manufacturing
level only, while for Italy, some NACE industries are combined. In particular, industries 16 through 18, 22
through 23, 24 through 25, 29 through 30, and 31 through 33 are combined for Italy.

14For Chile, rent is not differentiated by capital type, so I deflate using the structures deflator. Colom-
bia differentiates between structures rent and machinery rent, India between land rent, building rent, and
machinery rent (I use net rents for all three), and Indonesia between land rent and structures/machinery
rent. For the US, rent is not differentiated by capital type, so I deflate using the overall investment deflator.
For Southern Europe, data on rental payments are not available. For the retailer, I deflate rent using the
structures deflator, as most capital is structures.
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level, based upon a Tornqvist index with payroll based weights across 6 digit NAICS industries.
Because the payroll data in the NBER Productivity database does not include benefits, I multiply
this average wage by the ratio of compensation to wages and salaries at the 3 digit NAICS level
available from the BEA.15

G.4 Energy and Materials

I can separate energy costs from raw materials for the four manufacturing censuses. Total energy
costs are expenses on all energy inputs, subtracting out any electricity sold to other parties.

Real energy input requires energy deflators. For Chile, I have data on both value and quantity
of energy inputs for 10 different inputs (plus other fuel). I follow Greenstreet (2007)’s construction
of deflators for each energy input as the ratio of total value over total quantity for each 3 digit
industry-year. Other fuel is deflated using a value weighted average of the other fuels. Electricity is
deflated calculating an electricity price as the average total value of electricity over total quantity
for the year.

For Colombia, I calculate the average electricity price as the median ratio of value to quantity
across all plants for a given year and province and deflate electricity using this electricity price.
For fuels, I only have aggregate fuel value, which I deflate using the output deflator for the 3 digit
petroleum and coal industry.

For India, I deflate fuels and electricity using yearly deflators for each input.
For Indonesia, I calculate the average electricity price as the median ratio of value to quantity

across all plants for a given year and deflate electricity using this electricity price. For fuels, I have
data on both value and quantity of energy inputs for 7 different inputs (plus other fuel). I thus
create deflators for each energy input based on the median value to amount ratio by year. I use
the diesel oil deflator for other fuel inputs.

For Chile, Colombia, and India, I calculate total raw materials as total spending on raw mate-
rials, with an adjustment for inventories of raw materials by adding the difference between the end
year and beginning year value of inventories of raw materials. For Indonesia, total amount of raw
materials used are reported, which I use for total raw materials.

For Chile and Colombia, materials deflators are at the 3 digit ISIC level. For Indonesia, they
are at the 5 digit ISIC level and for India at the 4 digit NIC 2008 level. For Chile, I also deflate
lubricants, water, and grease using value to quantity ratios as for the energy inputs described above,
following Greenstreet (2007). For Indonesia, I also do the same for lubricants.

Unlike all other datasets, for the US I do not have materials costs as a separate data field.
Thus, I follow Keller and Yeaple (2009) and Demirer (2020) and define materials costs as cost of
goods sold plus selling, general, and administrative expenses minus depreciation and minus labor
costs as defined above. I deflate these materials costs using 3 digit NAICS level materials deflators
aggregated via a Tornqvist index with materials cost weights from the NBER Productivity database.

15For earlier years when only SIC data is available, I match SIC 2 digit industries to the equivalent NAICS
3 digit industries, and adjust for the industry difference using the average difference in ratio for 1998-2000
when both SIC and NAICS level data are available.
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For Southern Europe, I use materials costs for materials. I deflate materials by creating ma-
terials deflators at the NACE 2 digit level; these are a harmonic index of output deflators from
Eurostat for the Euro 19 area at the NACE 2 digit level, with weights as shares from the 2015
product by product input-output table.

For the retailer, materials are the total cost of goods sold at the store. Real materials are
constructed by deflating goods using the appropriate deflators from the PPI.

G.5 Sales

For the manufacturing censuses, I calculate total sales as total production value (both domestic
sales and exports, and sales to other establishments of the same company), plus the difference
between the end year and beginning year value of inventories of finished goods. Real sales are
nominal sales deflated by the output deflator. The output deflator is measured at the 3 digit ISIC
level in Chile and Colombia, at the 4 digit NIC 08 level in India, and the 5 digit ISIC level in
Indonesia.

For the US, I use total sales and deflate using 3 digit NAICS level output deflators from the
NBER Productivity database, aggregated via a Tornqvist index with sales weights. For Southern
Europe, I use total sales and deflate using output deflators at the 4 digit NACE level (3 digit or 2
digit NACE if 4 digit deflator not available) for the Euro 19 area from Eurostat. For the retailer,
I deflate total sales using PPI deflators for the relevant goods.

G.6 Industry Sectors and Data Cleaning

For Indonesia, I drop all duplicated observations. The industry definition also changes in 1998
from ISIC rev.2 to ISIC rev. 3 (with both reported in 1998). I assign plants in 1999 and 2000 the
reported ISIC rev. 2 industry in 1998 if they exist in 1998; if not, I use the modal 5 digit ISIC
rev.2 given the reported value of ISIC rev. 3 using data from 1998.

For India, the industry definition repeatedly changes over the sample period. I use the panel
structure of the data to create a consistent industry definition at the NIC 08 level. For plants with
a NIC 98 or NIC 04 industry, I set the plant’s industry to either the modal industry at the NIC
08 level across years for the plant, or, if this fails, the modal industry at the NIC 08 level for the
given NIC 04 or NIC 98 industry.

For both India and Indonesia, I follow Alcott et al. (2015) and drop plants with an electricity
share of sales above one and a labor, materials, or energy share of sales above two, or sales below
3 currency units.

For the US, I only include firms incorporated in the US. Because firms vary in the end of their
fiscal year, I set the year to be the current year for statements ending after May 31st and to the
previous year otherwise. I remove firms with missing or non-positive values of sales, employment,
cost of goods sold, selling, general, and administrative expenses, and depreciation. I also remove
firms with missing capital expenditures and with less than 10 employees.

For Southern Europe, I only include firms incorporated in the relevant country (i.e. Italy for
Italy, etc.). Because firms vary in the end of their fiscal year, I set the year to be the current year
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for statements ending after May 31st and to the previous year otherwise. I remove observations
missing a BVD ID or year, as well as duplicate observations with the same BVD ID and year.
I remove firms with missing or non-positive values of sales, employment, fixed assets, operating
expenses, materials costs, and wages, or employment above 2 million employees. Finally, I only use
the balanced panel, i.e. firms present for all 10 years of the sample.

G.7 Products

I construct ten homogeneous products in the Indian data. When doing so, I have to account for the
fact that the product coding changes several times over the sample period. I describe each product
below.

Biri cigarettes are recorded in thousands of cigarettes. In the 1998 to 2007 data, I use ASICC
code 15323. In the 2008 to 2009 data, I use ASICC code 15325. In the 2010 to 2014 data, I use
ASICC code 2509001.

Black Tea is recorded in kilograms. I include several product codes that correspond to black
tea, but exclude non-black tea, tea bags, and instant tea. In the 1998 to 2009 data, I use the
following ASICC codes: ASICC code 12211 [tea (black) leaf (blended)], ASICC code 12212 [tea
(black) leaf (unblended)], ASICC code 12213 [tea (black) dust (blended)], ASICC code 12214 [tea
(black) dust (unblended)], and ASICC code 12215 [tea (black) leaf (darjeeling)]. In the 2010 to
2014 data, I use the following ASICC codes: ASICC code 2391301 [Black Tea (CTC) ”crush, tear,
curl”], ASICC code 2391302 [darjeeling tea black leaf], ASICC code 2391303 [non-darjeeling black
leaf], and ASICC code 2391308 [tea dust].

Boxes, Corrugated Sheet are recorded in number of boxes. In the 1998 to 2009 data, I use
ASICC code 57104. In the 2010 to 2014 data, I use ASICC code 3215301.

Matches are recorded in kilograms. In the 1998 to 2009 data, I use ASICC code 37304. In the
2010 to 2014 data, I use ASICC codes 3899801 [Matches safety (match box)] and 3899899 [Matches
n.e.c.].

Portland Cement is recorded in tonnes. In the 1998 to 2007 data, I use ASICC code 94415.
In the 2008 to 2009 data, I use ASICC code 94414. In the 2010 to 2014 data, I use ASICC code
3744008.

Processed Milk is recorded in fluid liters. In the 1998 to 2009 data, I use the following ASICC
codes: ASICC code 11401 [fresh milk], ASICC code 11402 [flavored milk], ASICC code 11403
[chilled/frozen milk], and ASICC code 11404 [skimmed/pasteurized milk]. In the 2010 to 2012
data, I use ASICC code 2211000 [processed liquid milk]. In the 2013 to 2014 data, I use the
following ASICC codes: ASICC code 2211001 [full cream milk], ASICC code 2211002 [toned milk],
ASICC code 2211003 [skimmed milk], and ASICC code 2211099 [other processed milk (nec)].

Refined Sugar is recorded in tonnes. In the 1998 to 2009 data, I use ASICC code 13103. After
2009, refined sugar is initially split into multiple codes with different units (kilograms vs. tonnes),
so I do not include refined sugar after 2009.

Rice, Parboiled Non-Basmati is recorded in tonnes. In the 1998 to 2009 data, I use ASICC
code 12311. In the 2010 to 2014 data, I use ASICC codes 2316107 [Rice (other than basmati),
par-boiled milled] and 2316202 [Rice (other than basmati), par-boiled brown/ husked].
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Rice, Raw Non-Basmati is recorded in tonnes. In the 1998 to 2009 data, I use ASICC code
12312. In the 2010 to 2014 data, I use ASICC codes 2316108 [Rice (other than basmati), non-boiled
(atap) milled] and 2316203 [Rice (other than basmati), non-boiled (atap) brown/ husked].

Shelled Cashew Nuts is recorded in tonnes. In the 1998 to 2007 data, I use ASICC code 12111.
In the 2008 to 2009 data, I use ASICC code 12131. In the 2010 to 2014 data, I use ASICC code
2142400.

I only keep manufacturing plants with a 75% of greater revenue share of a given product. I
define the price of a product as the gross value of the product minus any reported expenses (excise
duty, sales tax, and other expenses) divided by the quantity sold. I then drop all plants whose price
is greater than five times, or less than 20%, of the median price for a given product in a given year.

Table G.1 below contains the total number of observations, and number of distinct manufac-
turing plants, for each product.

Table G.1 Homogeneous Products

Product Number of Observations Number of Distinct Plants

Biri Cigarettes 3234 1053
Black Tea 7263 1316
Boxes, Corrugated Sheet 4234 2299
Matches 2725 676
Portland Cement 2262 598
Processed Milk 2143 784
Refined Sugar 3612 600
Rice, Parboiled Non-Basmati 6433 4481
Rice, Raw Non-Basmati 5535 4061
Shelled Cashew Nuts 3118 979
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