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Abstract

Under the production approach to markup estimation, any flexible input should
recover the markup. I test this implication using manufacturing datasets from Chile,
Colombia, India, Indonesia, the US, and Southern Europe, as well as store-level data
from a major US retailer, and overwhelmingly reject that markups estimated using
labor and materials have the same distribution. For every dataset, markups estimated
using labor are negatively correlated with markups estimated using materials, exhibit
greater dispersion, and have opposite time trends. I continue to find stark differences
in markups estimated using energy and non-energy raw materials. Non-neutral pro-
ductivity differences across firms can explain these findings.
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Measuring the markup of price over cost is central to recent debates on whether market

power has been rising for the US and the world economy (Basu, 2019; Berry et al., 2019;

De Loecker et al., 2020; Syverson, 2019). Markups are crucial to evaluate the effects of merg-

ers and changes in trade barriers. Rising aggregate markups can also explain macroeconomic

phenomena such as the decline in the labor share of income (Grossman and Oberfield, 2022).

The production approach to markup estimation (Hall, 1988; Klette, 1999; De Loecker

and Warzynski, 2012) has allowed economists to measure aggregate markups by estimating

firm level markups across industries. The production approach uses flexible input choice to

identify the markup as a variable input’s output elasticity divided by its share of revenue.1

This approach requires one to know the production function. In practice, economists

using the approach have typically assumed that productivity is Hicks neutral. However,

when productivity is labor augmenting, more productive firms will have different output

elasticities of labor and materials than less productive firms. Ignoring such heterogeneity

will lead to systematically different markups estimated using different inputs.

Because any flexible input identifies the markup, the markup is overidentified with mul-

tiple flexible inputs. I thus compare markups estimated using labor, materials, or, mirroring

cost of goods sold in De Loecker et al. (2020), a composite of both.2 I conduct these compar-

isons using manufacturing censuses from Chile, Colombia, India, and Indonesia, firm level

1Given competitive input markets, a cost minimizing firm sets the additional revenue from a marginal
increase in a flexible input equal to the marginal cost of the input multiplied by the markup.

2In the literature, De Loecker and Warzynski (2012) and Blonigen and Pierce (2016) use labor, De Loecker
et al. (2016) materials, De Loecker and Scott (2017) both, De Loecker and Eeckhout (2018) cost of goods
sold, and De Loecker et al. (2020) cost of goods sold (Compustat) and labor (Economic Census).
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data from financial statements for the US and Southern Europe, as well as unique data on

individual stores from a nationwide US retailer.

Because the production approach requires estimates of the production function, these

comparisons jointly test the assumptions of the production approach itself and auxiliary

assumptions on production technology. The validity of estimates of markups using the pro-

duction approach will thus also depend upon the accuracy of auxiliary assumptions such

as Hicks neutrality. I follow De Loecker and Warzynski (2012) and estimate production

functions using the Ackerberg et al. (2015) control function estimator, which assumes pro-

ductivity is Hicks neutral.

I strongly reject that different inputs estimate the same markup in all seven datasets. I

focus on three major features of the markup distribution. Labor markups are much more

dispersed than materials markups. Markup measures using labor and materials are negatively

correlated in the cross-section. Finally, their time trends are negatively correlated as well.

One explanation for these findings is that frictions such as hiring and firing costs or

monopsony power affect the labor, but not materials, static cost minimization condition.

However, I continue to find stark differences between markups estimated using energy and

non-energy raw materials. In addition, after controlling for local labor markets using the

retailer data – which should capture both differences in input prices and monopsony power

across stores – labor markups remain highly negatively correlated with materials markups.

My findings of conflicting correlations when estimating markups with different inputs are
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also robust to several estimation approaches that assume only neutral productivity differ-

ences, estimating production functions at the subindustry or product level, and estimating

quantity rather than revenue production functions.

Non-neutral technology can explain these findings. Cost minimization implies that the

ratio of output elasticities for two inputs must equal the ratio of their costs. With only Hicks

neutral productivity, the ratio of output elasticities is a constant for the Cobb-Douglas, and

a deterministic function of production function parameters and inputs with no error for the

translog, and so cannot match the variation in input costs in the data. In contrast, non-

neutral productivity provides an error term for the ratio of output elasticities that saturates

the model.

When labor and materials are complements, higher labor augmenting productivity would

both lower labor’s output elasticity relative to materials’ output elasticity and labor costs

relative to materials costs. By ignoring such productivity differences when estimating output

elasticities, markups based upon alternative inputs would have opposing time trends and

negative correlations, as I have found.

This article is most similar to work that examines differences between markup estimates

using the production approach. De Loecker et al. (2020), Karabarbounis and Neiman (2018),

and Traina (2018) debate how using different inputs from Compustat affects the aggregate

trend in US markups, while Bridgman and Herrendorf (2022) examines the same question

using the National Accounts. De Loecker and Scott (2017) find similar average markup

3



estimates using the demand approach, as in Berry et al. (1995), to those from the production

approach using data on US breweries.

This article is also related to the literature on non-neutral productivity. Raval (2019) and

Oberfield and Raval (2021) document growth in labor augmenting productivity and labor

augmenting productivity differences for US manufacturing; Doraszelski and Jaumandreu

(2018) and Zhang (2019) do the same using Spanish manufacturing and Chinese steel data.

Section 1 lays out the production approach to estimating markups. Section 2 detail

the data and control function estimators, while Section 3 tests the production approach.

Section 4 argues that labor augmenting technology differences can explain the failure of

the tests and discusses new estimators (Demirer, 2020; Doraszelski and Jaumandreu, 2019)

accounting for such differences. Section 5 concludes.

1 Production Approach

Hall (1988) introduced the production approach by showing that, under perfect competition,

increases in an input should increase output by the input’s share of revenue. He identified

the markup as the wedge between the two; that is, the ratio of the change in output divided

by the change in the input multiplied by the revenue share. Because productivity shocks

would also affect output and inputs, Hall (1988) proposed using aggregate instruments for

input growth to estimate the markup.3

3Hall (1988) estimated this model on time series data for several industries, with aggregate instruments
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Klette (1999) was the first to extend the Hall (1988) framework to firm-level data, deriving

that the firm level markup is the output elasticity of an input divided by its share of revenue

for the firm, as in (4) below. However, he argued that this equation was unlikely to hold

without error. Instead, Klette (1999) developed a panel data framework to jointly estimate

the average markup across firms in the industry using within firm changes in variable inputs,

and average returns to scale using within firm changes in fixed inputs.

Unlike Klette (1999), De Loecker and Warzynski (2012) recovered firm level markups by

estimating the output elasticities for each firm. The key assumptions in their model were

that the firm cost minimizes in each period with respect to a variable input, and that the

firm is a price taker in the input market for that input. Below, I follow De Loecker and

Warzynski (2012) and derive the estimator for the markup under these assumptions.

A firm produces output with production function Fit(Kit, Lit,Mit), where Kit is capital

for firm i and time t, Lit is labor, and Mit is materials. The firm receives price Pit for its

output and faces input prices pXit for input X. A cost minimizing firm sets marginal products

equal to factor prices. This implies, for variable input Xit,

Pit
∂Fit
∂Xit

=
Pit
λit
pXit , (1)

where λit is the firm’s marginal cost.4 The left hand side is the marginal revenue product of

such as military spending, oil prices, and the president’s party. Others followed with more disaggregate
industry-level data (Domowitz et al., 1988; Basu and Fernald, 1997).

4The marginal cost is the Lagrange multiplier on the production function in the cost minimization prob-
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increasing input Xit. The right hand side is the marginal cost of increasing Xit – its price, pXit

– multiplied by the markup Pit
λit

. Thus, the markup is a wedge between the marginal revenue

product of an input and the marginal cost of an input.

Converting this expression to elasticity form5, the output elasticity for input X, βXit , is

equal to the markup µit multiplied by input X’s share of revenue sXit :

∂Fit
∂Xit

Xit

Fit
=

Pit
λit

pXitXit

PitFit
(2)

βXit = µits
X
it . (3)

The markup µit is then the output elasticity of input X divided by X’s share of revenue:

µit =
βXit
sXit

. (4)

This expression for markups holds for all variable inputs at the firm level. Thus, I can

test the production approach by examining whether the markup recovered using one input

is the same as the markup recovered using another.

lem.
5Formally, multiply each side by Xit

Fit
and divide each side by the price Pit.
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2 Data and Estimation

I summarize the seven datasets used in this paper in Table I, and provide more details on

data construction in Appendix A.

The first six datasets cover manufacturing; I use yearly plant censuses for Chile, Colombia,

and India, firm census for Indonesia, data from Compustat for an unbalanced panel of US

public firms, and data from ORBIS for a balanced panel of all firms in Italy, Spain, and

Portugal (“Southern Europe”). I define industries at an equivalent to 2 digit SIC (a broader

2 digit NAICS for the US) and include only industries with at least 1,000 observations.

I also use unique store level data on revenue and inputs for thousands of retail stores

from a major nationwide US retailer (“Retailer”) for three years. It provides each store’s

location, which allows me to assess explanations for differences in markups estimated using

different inputs in Section 4.2. Because the retailer’s data is from its internal accounting

systems, it is much higher quality than manufacturing survey data.

Table I Datasets

Dataset Unit of Observation Time Period No. Establishments No. Industries Used

Chile Manufacturing Plant 1979-1996 5,000 / year 16
Colombia Manufacturing Plant 1978-1991 7,000 / year 21
India Manufacturing Plant 1998-2014 30,000 / year 23
Indonesia Manufacturing Firm 1991-2000 14,000 / year 22
US (Compustat) Manufacturing Firm 1970-2010 500 / year 3
Southern Europe (ORBIS) Manufacturing Firm 2011-2020 100,000 / year 23
Retailer Retail Store 3 years Thousands / year 1

I follow De Loecker and Warzynski (2012) and estimate industry-level revenue production
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functions using the Ackerberg et al. (2015) control function estimator, which imposes that

productivity is Hicks neutral and evolves following a Markov process. Appendix B provides

more details on estimation.

I then estimate Cobb-Douglas and translog production functions, with two input spec-

ifications for each production function. In one specification, inputs are capital, labor, and

materials; in another, inputs are capital and a composite variable input of labor and materi-

als costs. I examine a composite variable input in order to mimic cost of goods sold, which

combines labor and materials, in De Loecker et al. (2020).6 With the resulting output elas-

ticities, I build six markup estimates for each establishment-year, using one of three inputs

(labor, materials, or the composite input) and one of the two production functions.

3 Empirical Tests

Under the production approach, any flexible input identifies the markup. I test the pro-

duction approach by examining how markup dispersion, time series correlations, and cross-

sectional correlations vary using different inputs. For all of these tests, and in all the datasets,

I strongly reject that different inputs estimate the same markup.

In Web Appendix D, I continue to find sharp differences between inputs examining

markup correlations with size, exports, a profit share based markup, and the level of com-

6In some cases, datasets record aggregated variable expenditures of the firm but do not differentiate
between inputs like labor and materials.
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petition.7

3.1 Dispersion in Markup Estimates

Under the production approach, the degree of markup dispersion should be the same using

different flexible inputs. Instead, I find very different levels of dispersion using different in-

puts. As an illustrative example, I plot the distribution of each markup across manufacturing

plants in the Chilean Food Products industry in 1996 using the translog estimates in Fig-

ure 1. The red solid lines are the labor markup, the blue dashed lines the materials markup,

and the green dash-dot lines the composite variable input markup. The labor markups are

much more dispersed than the materials markups, which are in turn more dispersed than

the composite input markups. Because of its greater dispersion, a large fraction of labor

markups are below one, which might be considered a lower bound on markups (Flynn et al.,

2019).

I find a similar pattern in all the datasets. I measure dispersion by calculating the

90/50 ratio of the markup estimates, which I report in Table II.8 Just as in Figure 1, labor

markups are more disperse than materials markups, which are more disperse than composite

input markups, for each dataset and production function except for the US Cobb-Douglas

estimates. For example, using the translog estimates, the 90th percentile markup is 103%

higher than the median markup for Chile using labor, 39% higher using materials, and 17%

7I also examine average markups in Web Appendix E.3.
8I report the 75/25 and 90/10 ratios in Web Appendix E.2.
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Figure 1 Distribution of Translog Markups for Chilean Food Products, 1996

using the composite input.

For the retailer, there is hardly any dispersion in materials markups – the 90th percentile

markup is only 3% higher than the median and 6% higher than the 10th percentile – but

substantial dispersion in the labor markup. For the labor markup, the 90th percentile is 30%

higher than the median markup and 76% higher than the 10th percentile under the translog

estimates.

3.2 Time Trends

Under the production approach, the time path in markups should be the same using different

flexible inputs. To test this, I estimate the following specification:
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Table II 90/50 Ratio of Markup Estimates

Labor Materials Composite Input
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Chile 2.67 2.03 1.53 1.39 1.17 1.17
(0.013) (0.008) (0.003) (0.004) (0.001) (0.001)

Colombia 2.88 1.82 1.82 1.43 1.16 1.17
(0.016) (0.005) (0.008) (0.004) (0.001) (0.001)

India 4.04 2.95 1.38 1.29 1.14 1.14
(0.013) (0.007) (0.001) (0.001) (0.000) (0.000)

Indonesia 4.06 3.12 1.66 1.46 1.15 1.16
(0.025) (0.019) (0.004) (0.003) (0.001) (0.001)

US 2.30 3.44 2.61 2.25 1.26 2.13
(0.017) (0.040) (0.026) (0.022) (0.003) (0.009)

S Europe 2.44 1.79 1.83 1.27 1.11 1.10
(0.002) (0.001) (0.002) (0.001) (0.000) (0.000)

Retailer 1.23 1.30 1.02 1.03 1.02 1.02
(0.002) (0.004) (0.000) (0.000) (0.000) (0.000)

Note: Estimates use all establishments and years. Standard errors are based on 20 bootstrap
simulations. For India, these estimates ignore the sample weights.

log(µXit ) = α + γt + δn + εit (5)

where µXit is the markup using input X for establishment i in year t, and γt and δn are

year and industry fixed effects. I then plot the year effects using the translog estimates in

Figure 2, with the first year normalized to zero. The red solid lines are the labor markup, the

blue dashed lines the materials markup, and the green dash-dot lines the composite input

markups.9

For all of the datasets, I find opposing patterns over time using labor compared to mate-

9I include the Cobb-Douglas trends in Figure E.1 in Appendix E.1. I always find significantly different
markup trends using different inputs.
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rials to measure the markup. The time trend for composite input markups lie between the

two, but much closer to materials, and exhibit less extreme movements.

For example, for Colombia, the average labor markup falls by 28% over the sample,

while the average materials markup rises by 8% and the composite input markup declines

by 3%. For India, the average labor markup is 39% lower at the end of the sample, while

the materials markup exhibits little change and the composite input markup declines by 5%.

For Indonesia, the Asian financial crisis strikes in 1998. The average labor markup rises by

17% in 1998, while the average materials markup declines by 4% and the composite input

markup remains unchanges. Except for Southern Europe, estimated markups exhibit large

changes over the sample period.

A major advantage of the production approach to markup estimation has been the ability

to aggregate across producers to estimate the aggregate markup, which is useful to answer

many macroeconomic questions, such as reasons for the decline in the labor share. While

De Loecker et al. (2020) aggregate by weighting markups by sales, Edmond et al. (2018)

argue that the cost weighted markup is the right benchmark for the aggregate markup for

welfare calculations of the cost of market power.

I compare changes in the unweighted aggregate markup to a cost aggregated markup

in Figure 3. The unweighted average labor markup increases by 91% from 1970 to 2010,

compared to a decline of 46% with the materials markup and 3% for the composite input

markup. With cost weights, the markup increase is larger; the aggregate labor markup rises
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Figure 2 Markup Time Trends using Translog Estimates
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.13



by 154%, while the materials markup declines by 23% and composite input markup rises by

3%. In Web Appendix E.4, I show that using different inputs to estimate markups continues

to lead to very different trends after aggregating with cost weights, or with sales weights, for

all of the datasets.

Figure 3 Markup Time Trends using Translog Estimates: US
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
The left figure weights all firms equally, whereas the right figure weights each firm by its share of
cost.

3.3 Correlations of Markup Estimates

Under the production approach, markup estimates using different inputs for the same estab-

lishment should be highly correlated with each other. Instead, I find negative correlations

between labor and materials markups. For example, in Figure 4, I plot the materials markup

on the x-axis against the labor markup on the y-axis for all plants in the Chilean Food Prod-
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ucts industry in 1996 using the translog estimates. Each a point is a different manufacturing

plant with the best linear fit as a solid black line. There is a slight negative relationship

between the labor markup and materials markup.
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Figure 4 Correlation of Markups for Chilean Food Products, 1996

Note: Each point is the translog markup for a manufacturing plant in Chilean Food Products in
1996; the x-axis is the materials markup and the y-axis is the labor markup. Solid black line is the
the best linear fit.

I examine the correlation between markup estimates for all the datasets by estimating

the following regression:

log(µLit) = α + β log(µMit ) + γt + δn + εit (6)

where µLit and µMit are the markups using labor and materials for establishment i in year t.
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I also include controls γt and δn, year and industry fixed effects, so estimated correlations

do not reflect the yearly trends discussed in the previous section. In this specification,

β represents the elasticity of the markup using labor with respect to the markup using

materials.

I report these correlations between markup measures in Table III. The labor and ma-

terials markups are negatively correlated with each other, the opposite of the relationship

implied by the production approach. Under the translog estimates, an establishment with a

1% higher materials markup has, on average, a 0.16% lower labor markup for Chile, 0.28%

lower for Colombia, 0.53% lower for India, 0.48% lower for Indonesia, 0.50% for the US,

0.32% for Southern Europe, and 10.08% lower for the Retailer. In general, the magnitude of

the negative correlation is even higher using the Cobb-Douglas estimates.10

3.4 Energy

One potential explanation for these findings is that labor is not a flexible input. The literature

suggests that violations of the static first order conditions are likely to be more severe for

labor (Dobbelaere and Mairesse, 2013), either due to hiring and firing costs when adjusting

labor (Petrin and Sivadasan, 2013), bargaining with unions, or labor monopsony power.11

10The large magnitude of the elasticities for the retailer is due to the measurement error correction to the
input share of revenue as in (15), because the estimated measurement error in sales is negatively correlated
with the materials share of revenue. If I ignore this correction, the elasticity between the labor and materials
markup is -1 for the Cobb-Douglas case and -2.3 for the translog case.

11Union bargaining under a “right to manage” model, in which bargaining is over the wage but the firm
can freely choose the number of workers, does not violate my baseline approach. See Nickell and Andrews
(1983) and Dobbelaere and Mairesse (2013).
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Table III Relationship between Markup Estimates

Dataset Cobb-Douglas Translog

Chile -0.66 -0.16
(0.017) (0.014)

Colombia -0.99 -0.28
(0.015) (0.021)

India -1.73 -0.53
(0.012) (0.009)

Indonesia -0.97 -0.48
(0.018) (0.021)

US -0.20 -0.50
(0.032) (0.029)

S Europe -0.80 -0.32
(0.005) (0.008)

Retailer -7.51 -10.08
(0.143) (0.102)

Note: Estimates based on (6) where the labor markup is the dependent variable and materials
markup the independent variable. Standard errors are clustered at the establishment level.

Thus, for the four manufacturing censuses, I separate materials into raw materials and

energy, where energy includes both electricity and fuel expenditure, and examine markups for

each separately. Both raw materials and energy should be robust to labor-specific violations

of the static cost minimization conditions. I then estimate production functions with capital,

labor, raw materials, and energy as separate flexible inputs.

I examine time trends separating raw materials and energy estimated using (5). I depict

the translog estimates in Figure 5, and the Cobb-Douglas figures in Figure E.2. In all four

datasets, the raw materials markup has a different time trend than the energy markup.

I report correlations between markup estimates using (6) in Table IV; for example, “Labor

on Energy” indicates that the (logged) labor markup is the dependent variable and energy
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Figure 5 Markup Time Trends using Translog Estimates, with Energy
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Note: Estimates based on (5), and include 95% Confidence Intervals (vertical bars) based on
clustering at the establishment level. All estimates relative to the first year, which is set to zero.
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markup the independent variable. Neither the labor or raw materials markup is highly

correlated with the energy markup. The raw materials markup is uncorrelated with the

energy markup using the translog estimates. The labor markup is negatively correlated with

the energy markup under the translog estimates, with a 0% increase in the energy markup

leads, on average, to a 0.02% to 0.1% decline in the labor markup. These findings are

inconsistent with purely labor-specific violations of the cost minimization conditions.

Table IV Relationship between Markup Estimates: Energy and Raw Materials Separated

Labor on Raw Materials Labor on Energy Raw Materials on Energy
Dataset Cobb-Douglas Translog Cobb-Douglas Translog Cobb-Douglas Translog

Chile -0.60 -0.05 0.21 -0.08 -0.13 -0.01
(0.017) (0.013) (0.008) (0.006) (0.003) (0.002)

Colombia -0.71 -0.05 0.16 -0.05 -0.26 0.00
(0.014) (0.011) (0.006) (0.005) (0.006) (0.003)

India -1.38 -0.32 0.28 -0.12 -0.11 0.00
(0.019) (0.008) (0.003) (0.003) (0.001) (0.001)

Indonesia -0.75 -0.18 0.16 -0.10 -0.14 0.01
(0.023) (0.019) (0.005) (0.006) (0.002) (0.002)

Note: Estimates based on (6) for markups from two flexible inputs, so Labor on Raw Materials
indicates a regression where the labor markup is the dependent variable and raw materials markup
the independent variable. Standard errors are clustered at the establishment level.

3.5 Robustness

In Web Appendix C, I show that the large, substantive differences between markups esti-

mated with different inputs demonstrated in this section are robust to several additional

specifications. First, these patterns are robust to using several alternative production func-

tion estimators assuming neutral productivity, including a dynamic panel approach (Blun-
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dell and Bond, 2000), an alternative control function approach (Flynn et al., 2019), and a

industry-year level cost share approach. Second, these patterns continue to hold estimating

production functions at the subindustry or product level. Third, I find similar patterns esti-

mating quantity rather than revenue production functions using a set of Indian homogenous

products. Finally, the data patterns are not consistent with measurement error explanations.

4 Non-Neutral Productivity and Markups

Why are markups estimated using labor so different than those estimated using materials?

Dividing the labor markup by the materials markup, we have12:

µ̂Lit
µ̂Mit

=
βLit
βMit

sMit
sLit

=
βLit
βMit

(
witLit
pmitMit

)−1, (7)

so the ratio of markups is equal to the ratio of output elasticities divided by the labor cost

to materials cost ratio. To estimate the same markup using different inputs, the labor cost

to materials cost ratio has to equal the ratio of output elasticities. For a Cobb-Douglas

production function, the ratio of output elasticities is a constant ( βl
βm

), so any differences

in the labor to materials cost ratio across plants violate this equality and will show up

as differences in estimated markups. A translog production function allows the output

elasticities to vary based upon inputs, but they remain a deterministic function of production

12I would like to thank an anonymous referee for suggesting this framing of the problem.
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parameters and inputs with no error term. Thus, the translog estimated output elasticities

cannot capture the full degree of heterogeneity in input shares across plants.13

So far, I have assumed Hicks neutral productivity, so productivity differences do not

affect output elasticities. Below, I show that non-neutral productivity differences can fully

capture the heterogeneity in input shares across plants by providing an error term in the

ratio of output elasticities.

4.1 Theory

In order to allow productivity to be non-neutral, I assume a CES production function with

elasticity of substitution σ, neutral productivity Ait, labor augmenting productivity Bit, and

distribution parameters αl and αm:

Fit = Ait((1 − αl − αm)K
σ−1
σ

it + αl(BitLit)
σ−1
σ + αmM

σ−1
σ

it )
σ
σ−1 . (8)

Input revenue shares are equal to the input’s output elasticity divided by the markup µit:

witLit
PitFit

=
1

µit
(
wit
λitAit

)1−σ(αl)
σ(Bit)

σ−1 (9)

pmitMit

PitFit
=

1

µit
(
pmit
λitAit

)1−σ(αm)σ (10)

13The ratio of output elasticities for the translog is:

βl + 2βlllit + βklkit + βmlmit

βm + 2βmmmit + βkmkit + βlmlit
.
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where λit is the marginal cost, wit the wage, and pmit the price of materials. An increase in

neutral productivity Ait does not affect input shares of revenue, as the marginal cost λit falls

to exactly compensate.

Labor augmenting productivity, in contrast, does affect input shares of revenue. An

increase in Bit is akin to more labor. Thus, after an increase in Bit, a firm will increase

materials Mit to exactly match the increase in effective labor BitLit. However, the increase

in Bit also reduces the cost of an efficient unit of labor, which is wit
Bit

. The plant will then

substitute towards relatively cheaper labor, with the ratio of effective labor to materials

BitLit
Mit

changing by σ given the change in the ratio of prices (wit/Bit)/p
m
it . Hence the labor

cost to materials cost ratio witL/p
m
itMit decreases 1 by a direct effect and increases σ by a

substitution effect when Bit increases.

When inputs are gross complements, as estimated in Doraszelski and Jaumandreu (2018)

and Raval (2019), σ is less than one and so the direct effect is stronger than the substitution

effect. A plant with higher labor augmenting productivity will then have a lower labor share,

higher materials share, and lower labor cost to materials cost ratio.

Thus, changes in labor augmenting productivity Bit move the output elasticities of labor

and materials in different directions. In the case when σ is less than one, improvements

in Bit decrease labor’s output elasticity, but increase materials’s output elasticity as the

marginal cost of production λ falls. If production function estimates ignore labor augmenting

productivity differences, a plant with a higher Bit would have a lower labor share and higher
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materials share, and so a higher labor markup and lower materials markup. Estimated

markups estimated using different inputs would be negatively correlated.

In Web Appendix F, I develop a Monte Carlo in which firms have different labor augment-

ing productivities and set different markups. In the Monte Carlo, control function estimators

assuming neutral productivity imply negatively correlated labor and materials markups. In

addition, neither labor or materials markups are highly correlated with the true markup.

The revenue share of the composite input of labor and materials is equal to the sum of

the right hand side of (9) and (10). Thus, the output elasticity of the combined input also

declines as labor augmenting productivity Bit increases, albeit less than the labor output

elasticity.14 If not accounted for, labor augmenting productivity differences will also bias the

composite input markup. For example, improvements in labor augmenting productivity over

time, all other things equal, would decrease the output elasticity of the composite input, and

so increase aggregate markups.

4.2 Alternative Explanations

Given (9) and (10), the labor cost to materials cost ratio is:

witLit
pmitMit

= (
wit
pmit

)1−σ(
αl
αm

)σ(Bit)
σ−1,

14The composite input elasticity is
(wit/Bit)

1−σασl +(pmit )
1−σασm

(λitAit)1−σ
.
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so non-neutral productivity differences Bit can clearly soak up any differences in the labor

cost to materials cost ratio across plants. However, unobserved differences in input prices

wit
pmit

could also lead to differences in factor costs (Grieco et al., 2016), as could monopsonistic

behavior by firms that would show up as “wedges” in input first order conditions. Finally,

measurement errors in inputs would also lead to differences in factor cost ratios across plants.

In general, it is difficult to assess whether differences in factor cost ratios across plants

are due to productivity differences as opposed to these other factors, as we typically do not

observe the plant’s input prices or its degree of monopsony power. Manufacturing survey

data also contain a substantial amount of measurement error (White et al., 2016).

With the retailer, however, I can control for these alternative explanations. First, the

retailer’s data is based on the internal records of the firm and so should have very little

measurement error compared to self-reported survey data. Second, I have detailed data on

the store location that allows me to control for local labor markets; the same chain’s input

prices and monopsony power should not vary within a local labor market. I control for local

labor markets through two types of location-year fixed effects. First, I use the MSA of the

store, defined as either the Metropolitan Statistical Area or Micropolitan Statistical Area

of the retail store’s location.15 Second, I use the store’s district as defined by the internal

structure of the retailer; each district has about 10 to 20 stores.

I then use the translog estimates and re-estimate (6) after controlling for either MSA-year

15For retail stores not located in a Metropolitan Statistical Area or Micropolitan Statistical Area, the fixed
effect is for all non-MSA locations in the same state.
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or district-year fixed effects. A retail store with a 100% higher materials markup has, on

average, a 1008% lower labor markup in the previous, baseline estimates, compared to 992%

lower with MSA-year fixed effects and 1006% lower with district-year fixed effects. Because

the negative correlation between labor and materials markups remains almost unchanged

after controlling for local labor markets, differences in input prices or monoposony power are

unlikely to explain the patterns that I find for the retail store.

On the other hand, there are several reasons why stores in the same retail chain may

vary in productivity. First, each store is run by its own store manager, and differences

in managerial ability are well known to affect productivity (Bloom and Van Reenen, 2007;

Fenizia, 2022), such as by affecting staff turnover (Hoffman and Tadelis, 2021). Second,

each retail store is a multi-product producer, with each section of the store using its own

production function and potentially different types of labor; stores vary in the importance

of components of the store.16 Finally, this retail chain operates some 24-hour stores, which

will have a different production technology than stores open during more standard hours.

4.3 Estimation

How can we estimate the production function given non-neutral productivity differences?

One possibility is to directly estimate first order conditions such as (9) and (10) using

variation in factor prices across firms and then recover the elasticity of substitution and

16This type of heterogeneity is common in retail. For example, Walmart Superstores have a much larger
grocery component than standard Walmart stores.
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productivities. For example, Raval (2019) exploits cross-sectional variation in wages across

US locations together with several instruments for such wages – local amenities and labor

demand instruments from Bartik (1991) and Beaudry et al. (2012) – for identification.

However, the researcher often does not have exogenous variation in input prices, or wants

to assume a different production function than the CES. Thus, three new approaches modify

existing methods of production function estimation to allow non-neutral productivity.

First, Doraszelski and Jaumandreu (2019) provide a new dynamic panel estimator for

markups. The estimator assumes a translog production function in which the combined

output elasticity of materials and labor is constant, quantity produced is observable, and

neutral productivity follows an autoregressive process. Log quantity produced is then a

linear function of its lag and differences in inputs and input shares, and model parameters

can be estimated via GMM. Output elasticities are measured with error (similar to Klette

(1999)), so individual markups are recovered up to this error.

Second, Demirer (2020) develops a non-parametric control function approach to estimate

output elasticities given non-neutral productivity. This approach requires only homothetic

separability between labor and materials, together with input choice timing assumptions.

As in (7), the ratio of input costs identifies the ratio of output elasticities. Demirer (2020)

uses the materials-labor ratio equation to form a control function for labor augmenting

productivity, and then the materials demand equation to form a control function for neutral

productivity.
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Lastly, Raval (2022) generalizes the cost share approach to markup estimation to account

for labor augmenting productivity differences. This flexible cost share estimator assumes that

cost minimization conditions hold for all inputs on average and returns to scale are constant.

Because labor augmenting productivity is proportional to the ratio of labor to materials

costs, Raval (2022) groups plants into bins with similar labor augmenting productivities

based upon this ratio and estimates output elasticities from cost shares within each group.

The attractiveness of these approaches will depend upon which assumptions the econome-

trician is comfortable with placing on the data. For example, Doraszelski and Jaumandreu

(2019) and Demirer (2020) estimate an output equation and so require data on quantity

produced, whereas Raval (2022) does not require quantity data as he estimates output elas-

ticities only using cost data. Doraszelski and Jaumandreu (2019) and Raval (2022) assume

all plants have the same variable returns to scale and total returns to scale, respectively.

And Raval (2022) implicitly places strong assumptions on the adjustment process of capital.

5 Conclusion

A key advantage of the production approach to estimating markups is that it allows one to

estimate markups across widely differing industries, and thus estimate the aggregate markup.

However, the production approach, as currently implemented, delivers very different markups

using alternative flexible inputs. Labor markups are negatively correlated with materials

markups, have opposing time trends, and are much more disperse. Non-neutral technological

27



differences across plants can explain these findings, as ignoring such differences will lead to

negatively correlated labor and materials markups.

The development of the parallel demand approach to markup estimation provides guid-

ance on how to measure markups going forward. The demand approach focuses on modeling

the heterogeneity in preferences across consumers; for example, Berry et al. (1995) estimate

random coefficients that allow consumers to vary in their sensitivity to price. In order to use

the production approach, economists will have to allow more heterogeneity in technology.

Data Availability Statement: The data underlying this article are available on Zenodo at

https://doi.org/10.5281/zenodo.7473821.
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A Data

For each dataset used in this paper, I construct capital, labor, materials, and sales at the establishment-
year level. I provide further details on data construction in Web Appendix G.

An establishment is a manufacturing plant for the Chilean, Colombian, and Indian data, a firm
for the Indonesian, US, and Southern European data, and a retail store for the retailer. India is
a census for plants above 100 employees and a sample for smaller plants; I thus use the provided
sampling weights.

I use capital, materials, and output deflators in order to construct consistent measures of inputs
and outputs over time, and drop any observations with zero or negative capital, labor, materials,
sales, or labor costs. I also drop observations in the bottom 1% and top 1% of labor’s share of
revenue, materials’s share of revenue, and the composite variable input share of revenue for each
industry to remove outliers.

For labor, I use the number of workers for Chile, Colombia, Indonesia, US, and Southern Europe,
the number of manufacturing worker-days for India, and the total number of hours worked for the
retailer. Labor costs are the total of salaries and worker benefits.

For materials, I include expenses for raw materials, electricity, and fuels for the manufacturing
censuses. For Southern Europe, materials is total materials costs, while for the retailer, materials
is the sum of the cost of goods sold across different parts of the store. The composite variable input
is the sum of materials and labor costs.17

For the US, I do not have separate data fields on labor costs and materials costs. Instead, I
follow Keller and Yeaple (2009) and Demirer (2020) and estimate labor costs as total employees
multiplied by an industry-level average wage, and materials costs as cost of goods sold and selling,
general, and administrative expenses minus depreciation and labor costs.

For capital, where possible, I construct a perpetual inventory measure of capital for each type of
capital and rental rates of capital based on an average real interest rate over time plus depreciation
for that type of capital. My measure of capital is then the sum of capital stocks times their rental
rates, plus any rental payments for capital.18

For the manufacturing datasets, I estimate production functions at the industry level, defined
at a similar level to two digit US SIC (i.e., Chilean Food Products).19 Given the smaller size of the
US data, I follow De Loecker et al. (2020) and estimate production functions at the 2 digit NAICS

17I deflate this input using the output deflator to match De Loecker et al. (2020)’s treatment of cost of
goods sold.

18This provides an approximation to a Divisia index for capital given different types of capital. See Diewert
and Lawrence (2000) and Harper et al. (1989) for details on capital rental rates and aggregation. For the
US, I do not have data on separate types of capital, and use rental rates from Oberfield and Raval (2021).
For Southern Europe, I only have book values of capital. For the retailer, I use BLS rental rates for retail
trade. See Web Appendix G for more details on capital construction.

19For Chile, Colombia, and Indonesia this is at the three digit ISIC (Rev.2) level, for India at the two
digit NIC 08 level, and for Southern Europe at the 2 digit NACE level. Estimating production functions at
this level of aggregation is consistent with the production function literature, such as Levinsohn and Petrin
(2003) or Gandhi et al. (2020).
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level, so there are three industries. I only include industries with at least 1,000 observations over
the entire dataset. For the retailer, I estimate a single production function across all retail outlets.

B Estimation

Given (4), estimating the markup requires the input share of revenue and the output elasticity of
that input. The input share of revenue, defined as costs for input X divided by total firm revenue,
is observed. However, the production function has to be estimated to recover output elasticities. I
describe below how De Loecker and Warzynski (2012), and subsequent papers using the production
approach such as De Loecker et al. (2020), address this estimation challenge using a control function
approach that assumes productivity is Hicks neutral.

B.1 Production Functions

All lower case variables are in logged form, so kit is capital, lit labor, and mit materials. For
the Cobb Douglas production function with labor and materials, the (logged) production function
excluding the Hicks neutral productivity term is:

fit = βkkit + βllit + βmmit

and so the output elasticity for input X is simply βX . For the translog production function, the
production function is:

fit = βkkit + βllit + βmmit + βkkk
2
it + βlll

2
it + βmmm

2
it + βklkitlit + βkmkitmit + βlmlitmit

and so the output elasticity for each input will depend upon the level of all inputs. For example,
the firm’s output elasticity for materials would be βm + 2βmmmit + βkmkit + βlmlit.

For both the Cobb-Douglas and translog production functions, the production function coeffi-
cients are not time-varying. However, for the translog, output elasticities can vary over time due
to changes in factors.

B.2 Control Function Estimation

I follow De Loecker and Warzynski (2012) and use the Ackerberg et al. (2015) (ACF) estimator
for my baseline estimates. The ACF estimator imposes substantial additional assumptions on
productivity, including that productivity is Hicks neutral and evolves following a Markov process.
In addition, it requires a set of timing assumptions where at least one input is decided at the
time the firm learns its productivity shock. I discuss problems with this estimator, and alternative
estimation approaches using neutral productivity, in Web Appendix C.1.

The control function approach assumes that observed revenue includes additive measurement
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error εit. Thus, given log productivity ωit, measured log revenue yit is:

yit = f(kit, lit,mit) + ωit + εit. (11)

Let materials be the flexible input decided at the time the firm learns its productivity shock.
Materials is then a function of the observed inputs and productivity mit = g(kit, lit, ωit). It can
then be inverted for productivity, so ωit = g−1(kit, lit,mit).

20

The first stage of the ACF estimator controls for a flexible form of the inputs to recover the
additive measurement error εit. Formally, measured log revenue yit is:

yit = f(kit, lit,mit) + g−1(kit, lit,mit) + εit = h(kit, lit,mit) + εit (12)

Since both the production function and productivity are functions of the inputs, they cannot be
separated in the first stage. Instead, the nonparametric function h includes both productivity ωit
and the production function f . The measurement error in sales εit is a residual in the first stage
equation after controlling for h.21

The second major assumption of the ACF approach is that productivity follows a first order
Markov process. In my implementation, I further assume an AR(1) process. Formally,

ωit = ρωit−1 + νit (13)

with AR(1) coefficient ρ and productivity innovation νit. In that case, given knowledge of the
production function coefficients β, one can recover the innovation in productivity νit as:

νit(β) = ωit − ρωit−1 (14)

The innovation in productivity is a function of production coefficients β because ωit = yit − εit −
fit(β), and εit was recovered in the first stage.

Because the innovation in productivity is, by construction, independent of inputs chosen before
time t, moments of the innovations multiplied by inputs chosen before the productivity innovation,
such as E(νitlit−1) or E(νitkit), identify the production function coefficients.

For the Cobb-Douglas production function, I use capital and the first lag of materials and labor
as instruments. For the translog, I use capital and the first lag of materials and labor, as well as
their interactions, as instruments.22

Finally, I follow De Loecker and Warzynski (2012) and correct the value of sales in the input
share of revenue for the measurement error estimated in the first stage. Thus, for input X, the
estimate of the markup is:

µ̂it =
β̂Xi

sXit exp(ε̂it)
. (15)

20The g() function can include other determinants of materials as well, such as materials prices.
21In practice, I use a third order polynomial in inputs for the function h, and also control for year effects.
22For the specification with the composite variable input instead of labor and materials separately, I use

the lag of the composite input and its interactions as instruments, symmetrically to the case above.
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