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Abstract

Although diversion ratios are important inputs to merger evaluation, there is little evidence
about how accurately discrete choice models predict them. Using a series of natural disasters
that unexpectedly closed hospitals, we compare observed post-disaster diversion ratios to those
predicted from pre-disaster data using standard models of hospital demand. We find that all
standard models consistently underpredict large diversions. Both unobserved heterogeneity in
preferences over travel and post-disaster changes to physician practice patterns can explain
some of the underprediction of large diversions. We find a significant improvement using mod-
els with a random coefficient on distance.
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1 Introduction

Directly measuring the extent to which products are substitutes has become fundamental to

horizontal merger analysis. One measure of substitutability is the diversion ratio, which, in

the posted price context, is defined as the share of consumers who switch from one specific

product to another in response to a marginal price change (Farrell and Shapiro, 2010). The

US Department of Justice (DOJ) and Federal Trade Commission (FTC) added this metric

to the 2010 Horizontal Merger Guidelines, characterizing it as a measure of “the extent of

direct competition” between merging parties’ products.

The FTC and DOJ now use diversion ratios outside of their original posted price con-

text to characterize the intensity of competition between merging parties, adjusting the

measure to reflect the price setting mechanism. In particular, the FTC regularly uses the

choice-removal diversion ratio as a measure of substitutability in negotiated price settings

like hospital markets (e.g., Farrell et al., 2011; Capps et al., 2019). Whereas the standard di-

version ratio measures substitution in response to marginal price changes, the choice-removal

diversion ratio is defined as the share of patients who switch from hospital A to hospital B

if hospital A is no longer available in their choice set.

Ideally, one would estimate the choice-removal diversion ratio by observing the share of

patients that would have chosen hospital A if it were available but instead go to hospital B

after hospital A is removed from patients’ choice sets. This is analogous to what would occur

if the hospital were excluded from a private insurer’s network of covered providers. However,

exogenous breakdowns in contracting between hospitals and managed care organizations are
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rarely, if ever, available. As a result, economists typically estimate choice-removal diversion

ratios using discrete choice demand models that do not include this type of variation. Despite

choice-removal diversion ratios’ importance to the study of health care markets and antitrust

policy, it is unknown how well frequently used econometric models recover them.

We address this question by comparing econometric models’ predictions of choice-removal

diversion ratios to observed diversion patterns following the unexpected closures of six dif-

ferent hospitals. Specifically, we exploit the effects of four natural disasters that temporarily

closed a variety of hospital types (e.g., small community hospital, academic medical center,

etc.) in urban, suburban, and rural markets. The natural disasters allow us to measure

the recapture of the destroyed hospital’s patients by other area hospitals. Our experimental

setting thus approximates the counterfactual exercise of an insurer excluding a hospital from

a network.

Using pre-disaster data, we estimate eight different demand models that have been used

in research and policy analysis. All of these models are variations of the discrete choice logit

framework. They differ in what assumptions are imposed about the role observable patient

heterogeneity may play in determining hospital choices.

Across all of the disasters, we find that all of the demand models consistently underpredict

choice-removal diversion to hospitals with large observed diversion ratios. A ten percentage

point increase in the observed diversion ratio increases the gap between the predicted and

observed diversion ratios by 3.5 to 4.3 percentage points. However, some models perform

better at predicting choice-removal diversion ratios than others. Demand models that include

as covariates alternative specific constants – a measure of vertical differentiation – and patient

travel time – a measure of horizontal differentiation – perform significantly better than those
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without either one of these elements. Among the models that include both of the elements,

there is little difference in the accuracy of predictions of choice removal diversion ratios.

Differences in the disutility of travel across patients are one likely explanation for our

findings. On average, we underpredict diversion to nearby hospitals, which could be due

to patients of the destroyed hospital having a greater disutility of travel than the average

patient in the service area. We account for such heterogeneity by including a random coef-

ficient on travel time, and find a 20 to 25% improvement in model performance. Given this

improvement, one may want to include random coefficients in demand models even when

rich microdata allows flexible controls for observed heterogeneity.

Another potential explanation for our findings is changes in the physicians that patients

see. Typically, physician referrals are not included in models of hospital demand, including

all of the models we estimate. We can, however, examine changes in physician labor supply

using data on operating physicians for the New York disasters. For the NYU closure, we

substantially underpredict diversion to the hospital that saw a large influx of NYU physicians

post-disaster. In general, we find a massive decline in admissions associated with doctors

from the destroyed hospitals. If patients went to different physicians after the disaster,

demand post-disaster could be quite different than demand pre-disaster.

Overall, we add to the growing body of work using quasi-exogenous variation to assess

the performance of econometric models. This literature stems from LaLonde (1986), and

recent contributions include Todd and Wolpin (2006) and Pathak and Shi (2014). Within

this literature, our article is most similar to that of Conlon and Mortimer (forthcoming), who

also use experimental data to evaluate diversion estimates. We view our respective analyses

as complementary. Although both studies examine diversion ratios using variation arising

4



from the elimination of a choice, Conlon and Mortimer (forthcoming)’s setting is a posted

price one, where the economically relevant diversion ratio is from a small price change. In

contrast, we study a bargaining setting in which the diversion ratio of interest also involves

removing a choice from consumers’ choice sets. Moreover, we formally assess the role for

unobservable heterogeneity even when rich data on consumer and product characteristics are

available.

Our article also contributes to the literature on hospital competition and merger eval-

uation.1 Our results suggest that using standard discrete choice demand models may be a

useful, albeit imperfect, means of estimating choice-removal diversion ratios. As we have

noted, these diversion ratios are an important input into hospital merger analysis. Providers

and payers also use these models to predict demand for providers’ services.

Finally, our article is related to Raval et al. (2021), which studies how machine learning

models perform in changing choice environments. Using variation from the same set of natu-

ral disasters described in this article, that article studies machine learning models’ predictive

accuracy for individuals’ choices. In contrast, we focus here on traditional econometric mod-

els’ performance in predicting aggregate diversion ratios and the policy implications of those

estimates.

The article proceeds as follows. In Section 2, we briefly lay out why the choice-removal

diversion ratio is a means of gauging the potential harm from horizontal mergers when prices

are negotiated. We describe the disasters, research design, and data in Section 3 and we

discuss the specifications we focus on in this article and model estimation in Section 4. In

1Studies include Capps et al. (2003), Gowrisankaran et al. (2015) and Garmon (2017), as well as the
literature surveyed in Gaynor et al. (2015).
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Section 5, we show that all of our models underpredict large diversions, but that some models

do better than others. We examine explanations for why we underestimate large diversions

in Section 6. Section 7 concludes.

2 Background

The marginal price change diversion ratio was derived in the context of posted-price markets

in which consumers directly face price differences across products. However, in markets for

health care providers, most patients do not directly face price differences across providers

as long as providers are in patients’ network of covered providers from their managed care

organization (MCO). Given this dynamic, the antitrust analysis of these mergers has focused

on provider competition for inclusion in MCO networks (Capps et al., 2019). We explain

below why the choice-removal diversion ratio serves as an important quantitative metric for

the post-merger loss of that competition.

The agencies, following the recent academic literature on hospital competition, model

interactions between MCOs and health care providers as a series of independent bilateral

negotiations over the price the MCO will pay for care provided to its beneficiaries that

receive care at the provider.2 In this framework, consider a market where two hospitals

plan to merge. The pre-merger price paid to each hospital reflects the value each hospital

contributed to the MCO’s network. This value is a function of their substitutability to the

other merging party as well as any additional hospitals in the network. If patients saw

2A “Nash-in-Nash” concept is typically used to model equilibrium outcomes. For the use of this approach
by the US antitrust agencies, see Capps et al. (2019) or Farrell et al. (2011). For its use in the academic
literature, see Gaynor et al. (2015), Gowrisankaran et al. (2015), or Ho and Lee (2017).
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the two merging hospitals as particularly substitutable, the choice removal diversion ratios

between them would be high. This would imply that the value each would add to an MCO’s

network in isolation is small. If one of the hospitals was excluded then those patients who

would have gone to the newly excluded hospital would end up at the other with negligible

loss in welfare.

Once the hospitals merge, however, the combined system will be in a much stronger

position in its negotiations with the MCO. Now, rather than having the outside option be a

network that still included many patients’ (close substitute) second choice, the value of the

MCO’s outside option will depend upon the attractiveness of the remainder of its network

to patients who lost their first two choices. The diminished value of this outside option

leads to higher post-merger prices (Gaynor et al., 2015). If the system instead bargains on

a hospital-by-hospital basis, its post-merger outside option if it fails to reach an agreement

for one of the hospitals will internalize the recapture of many of the patients that would

have gone to the excluded hospital. All else equal, this too will lead to higher post-merger

negotiated prices (Garmon, 2017).

Thus, the choice-removal diversion ratio, our focus in this article, captures the extent

to which a given hospital is the second choice of another hospital’s patients, which is the

relevant notion of diversion for these markets. Although the choice-removal diversion ratio

is not discussed in the 2010 Horizontal Merger Guidelines, the close connection to how

competition takes place in provider markets have led them to be used in the FTC’s analysis

of hospital mergers (Capps et al., 2019; Farrell et al., 2011), official FTC court filings in

support of FTC challenges to hospital mergers, and in court by testifying experts.3

3For an expert report, see Capps et al. (2019, p. 453). For FTC complaints, see
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3 Data

Disasters

To study the accuracy of estimated choice-removal diversion ratios, we use the unexpected

closures of six hospitals following four natural disasters. Table Ia lists the locations of the

disasters, when they took place, the nature of the event, and the hospital(s) affected. The

Northridge earthquake destroyed St. John’s Hospital in Santa Monica, a city adjacent to Los

Angeles. Two tornadoes hit Sumter Regional Hospital in rural Georgia and Moore Medical

Center in suburban Oklahoma City. Finally, Superstorm Sandy hit New York City and closed

three hospitals – NYU Langone, Bellevue Hospital Center, and Coney Island Hospital. NYU

Langone is one of the top academic medical centers in the country, Bellevue Hospital is the

flagship of the New York City public hospital system, and Coney Island Hospital is the local

hospital of the Coney Island neighborhood.

Our sample thus includes disasters affecting urban markets as well as rural markets, and

elite academic medical centers as well as community health centers. A significant advantage

of the heterogeneity in location and hospital type is that any results consistent across these

different settings are likely to have high external validity.

Our analysis relies on comparing predictions based on models estimated on data from

the period before the disaster (“pre-period”) to admissions taking place after the disaster

(“post-period”). Table Ib lists the closure and reopening dates for each of the destroyed

www.ftc.gov/enforcement/cases-proceedings/141-0191-d09368/penn-state-hershey-medical-

center-ftc-commonwealth and www.ftc.gov/enforcement/cases-proceedings/1410231/ftc-v-

advocate-health-care-network.
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hospitals as well as our delineations of the pre- and post-periods for each of the hospitals.

We exclude the period immediately surrounding the disaster to avoid including injuries from

the disaster. This also serves to ensure that the choice environment resembles the pre-period

as much as possible. We provide more on the rationale for our time-periods in Appendix B.4

Location Month/Year Severe Weather Hospital(s) Closed

Northridge, CA Jan-94 Earthquake St. John’s Hospital
Americus, GA Mar-07 Tornado Sumter Regional Hospital
New York, NY Oct-12 Superstorm Sandy NYU Langone

Bellevue Hospital Center
Coney Island Hospital

Moore, OK May-13 Tornado Moore Medical Center

(a) Disaster Details

Hospital Closure Date Pre-Period Post-Period Partial Reopen Full Reopen

St. John’s 1/17/94 1/92 to 1/94 5/94 to 9/94 10/3/94 10/3/94
Sumter 3/1/07 1/06 to 2/07 4/07 to 3/08 4/1/08 4/1/08
NYU 10/29/12 1/12 to 9/12 11/12 to 12/12 12/27/12 4/24/14
Bellevue 10/31/12 1/12 to 9/12 11/12 to 12/12 2/7/13 2/7/13
Coney 10/29/12 1/12 to 9/12 11/12 to 12/12 2/20/13 6/11/13
Moore 5/20/13 1/12 to 4/13 6/13 to 12/13 5/16 5/16

(b) Pre and Post Periods

Table I Natural Disaster Details and Dates

For our research design, we require that the disaster did not meaningfully disrupt the

wider area beyond closing particular hospitals. In that case, we might worry that predictions

based on the pre-period would not be meaningful following the disaster. For the six hospitals

we focus on in this article, our analysis suggests that the extent of the damage was limited

compared to the size of the affected hospitals’ service areas.

For example, the green line in Figure 1 shows the path of the tornado that destroyed

Sumter Regional Hospital. Its path was very narrow, cutting through Americus city without

4Except for St John’s, the omitted period is just the month of the disaster. For St. John’s, we omit data
until the freeway going through Santa Monica was reopened.
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Figure 1 Damage Map in Americus, GA

Note: The green area indicates the damage path of the tornado. The zip codes included in the
service area are outlined in pink. Sources: City of Americus, GA Discharge Data

affecting the rural areas surrounding Americus. The tornado in Moore, OK had a similar

effect for the city of Moore relative to its suburbs. For Superstorm Sandy, storm damage was

mostly limited to areas adjacent to the East River, Long Island Sound, or adjacent water-

ways. Seismic damage from the Northridge Earthquake was more scattered, with much more

damage in Santa Monica than neighboring areas. We provide details for all the disasters,

including maps, in Appendix A.

Overall, the evidence suggests that the disasters’ effect on the relative desirability of

different hospitals can be mostly limited to the exclusion of the destroyed hospital from

patient’s choice sets. Nevertheless, there were some changes to the patient population or

providers in the affected areas following the disasters. We examine whether such changes

could explain our results in Section 5 and Section 6, as well as in Web Appendix A3.
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Data Sources and Variables

We rely on several sources of data in our analysis. For patient information, we use detailed

discharge data collected by the departments of health for the states where disasters took

place.5 For each state, the discharge datasets provide a census of all inpatient episodes for

each licensed hospital located within the state; an inpatient episode is defined as a patient

admitted to the hospital where the visit lasted at least 24 hours. For each admission, the

data provide the date of admission and discharge, patient’s zip code of residence, diagnosis on

admission, and a variety of demographic characteristics, including age and sex. In addition,

we can construct the DRG weight, a commonly used measure of disease acuity developed

by Medicare, based on available diagnosis and procedure codes. An important variable is

patients’ travel time to hospitals; we use ArcGIS to calculate the travel time, including traffic,

between the centroid of the patient’s zip code of residence and each hospital’s address.

We obtain hospital characteristics from the annual American Hospital Association (AHA)

Guide and Medicare Cost Reports. These data include such details as for-profit status,

whether or not a hospital is an academic medical center or a children’s hospital, the number

of beds, the ratio of nurses to beds, the presence of different hospital services such as an

MRI, trauma center, or cardiac intensive care unit, and the number of residents per bed.6

5Background details on these data sets are available at the websites of the New York, Georgia, Oklahoma,
and California state health departments.

6For a few hospitals in California, New York and Oklahoma, the AHA and Medicare Cost
Reports contain data on the total hospital system rather than individual hospitals. For the
AHA Guide, see http://www.ahadataviewer.com/book-cd-products/AHA-Guide/. For the Medicare
Cost Reports, see http://www.cms.gov/Research-Statistics-Data-and-Systems/Files-for-Order/

CostReports/index.html?redirect=/costreports/.
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Affected Patients and Hospitals

In order to identify the set of patients and hospitals affected by the loss of the destroyed

hospital, we first identify patients whose choice set was affected by a disaster. All of our

destroyed facilities are general acute care (GAC) hospitals; therefore, we exclude patients

going to specialty (e.g., long-term care or psychiatric) hospitals. Such facilities are primarily

focused on treating patients with different diagnoses and conditions than the destroyed

hospitals. We also exclude patients who do not have, or are unlikely to have had, autonomy

in their hospital choice, such as newborns and court ordered admissions, as well as patients

who are likely to consider a broader set of hospitals than just general acute care hospitals

given their condition, such as those with psychiatric or eye issues.

We drop newborns, transfers, and court-ordered admissions. Newborns do not decide

which hospital to be born in (admissions of their mothers, who do, are included in the

dataset). Similarly, government officials or physicians, and not patients, may decide hospi-

tals for court-ordered admissions and transfers. We drop diseases of the eye, psychological

diseases, and rehabilitation based on Major Diagnostic Category (MDC) codes, as patients

with these diseases may have other options for treatment beyond general hospitals. We also

drop patients whose MDC code is uncategorized (0), and neo-natal patients above age one.

We also exclude patients who are missing gender or an indicator for whether the admission

is for a Medical Diagnosis Related Group (DRG).

We then construct the 90% service area for each destroyed hospital using the discharge

data, which we define as the smallest set of zip codes that accounts for at least 90% of the

hospital’s admissions. Because this set may include areas where the hospital is not a major
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competitor, we exclude any zip code where the hospital’s share in the pre-disaster period

is below 4%. Our approach assumes that any individual that lived in this service area and

required care at a general acute care hospital would have considered the destroyed hospital

as a possible choice.

Having established the set of patients affected by the loss of a choice, we turn to defining

the set of relevant substitute hospitals. We identify these as any general acute care hospital

that has a share of more than 1% of the patients in the 90% service area, as defined above, in

a given month (quarter for the smaller Sumter and Moore datasets) prior to the disaster. We

combine all general acute care hospitals not meeting this threshold into an “outside option.”

Descriptive Statistics

Table II displays some characteristics of each destroyed hospital’s market environment, in-

cluding the number of admissions before and after the disaster, the share of the service

area that went to the destroyed hospital prior to the disaster, the share of the population

that went to the “outside option” prior to the disaster, the number of zipcodes in the ser-

vice area, and the number of rival hospitals. We also show the average acuity of patients

choosing the destroyed hospital during the pre-disaster period as measured by average DRG

weight.7 DRG weights are designed to reflect the resource intensity of patients’ treatments.

Therefore, differences in the average weights across hospitals reflect variation in treatment

complexity.

Table II indicates that Sumter Regional’s service area likely experienced a massive change

7In this article, when we use the term “DRG weight”, we mean the DRG weight used by the Centers for
Medicare and Medicaid Services. Since 2007, these are officially called MS-DRG weights.

13



from the disaster; the share of the destroyed hospital in the service area was over 50 percent.

For the other disasters, the disruption was smaller though still substantial as the share of

the destroyed hospital in the service area ranges from 9 to 18 percent. Thus, patients’ choice

environments are likely to have changed substantially after the disaster.

Table II also shows that we have a substantial number of patient admissions before and

after each disaster with which to parameterize and test the different models. The number of

admissions in the pre-period and post-period datasets ranges from the thousands for Moore

and Sumter to tens of thousands for the New York hospitals and St. John’s.8

Table II Descriptive Statistics of Affected Hospital Service Areas

Pre-Period Post-Period Zip Choice Set Outside Option Destroyed Destroyed
Admissions Admissions Codes Size Share Share Acuity

Sumter 6,940 5,092 11 15 3.6 50.4 1.02
StJohns 97,030 18,130 29 21 9.1 17.4 1.30
NYU 79,950 16,696 38 19 11.0 9.0 1.40
Moore 9,763 3,920 5 12 1.8 11.0 0.93
Coney 46,588 9,666 8 17 7.4 18.2 1.16
Bellevue 46,260 9,152 19 20 8.0 10.8 1.19

Note: The first column indicates the number of admissions in the pre-period data, the second
column the number of admissions in the post-period data, the third column the number of zip codes
in the service area, the fourth column the number of choices (including the outside option), the fifth
column the share of admissions in the pre-period from the 90% service area that went to the outside
option, the sixth column the share of admissions in the pre-period from the 90% service area that
went to the destroyed hospital, and the seventh column the average DRG weight of admissions to
the destroyed hospital in the pre-period data.

4 Estimation

Most models of hospital demand (e.g., Capps et al., 2003; Ho, 2006; Gaynor et al., 2013;

Gowrisankaran et al., 2015; Ho and Lee, 2019) use similar parameterizations for patient

8The New York service areas do overlap. The service area for NYU is much larger than Bellevue. NYU
has a 3.9 percent share in the Coney service area and 9.5 percent share in the Bellevue service area, and
Bellevue has a 5.7 percent share in the NYU service area.
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preferences. In particular, they assume that patient i’s utility for hospital j is given by:

uij = δij + εij, (1)

where εij is distributed type I extreme value (logit). The patient has a choice set of J

hospitals. The logit assumption implies that the probability that patient i receives care at

hospital j is:

sij =
exp(δij)∑
k∈J exp(δik)

. (2)

Given (2), in the event that hospital j is removed from i’s choice set, the likelihood that

i chooses to receive care at k – as opposed to other hospitals in J – will be:

Djk
i =

exp(δik)

1 − exp(δij)
. (3)

Here, Djk
i represents the choice removal diversion ratio from j to k for patient i. Constructing

the overall population’s choice removal diversion ratio for j to k involves averaging across

the Djk
i ’s for all patients i in the market. We denote this overall choice removal diversion

ratio Djk. This calculation presumes that patients would not continue seeking treatment

from j after it disappears from J .
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Model Parameterizations

Whereas the previous literature estimating hospital demand has typically assumed a logit

error as in (2), researchers have specified the parametric component of utility δij differently.

The following parameterization encompasses the different models used in the literature:

δij =
∑
m

∑
l

βmlxjmzil + γ
∑
l

zilαj +
∑
m

∑
l

f(dij;xjmzil) + αj, (4)

where i indexes the patient, j indexes the hospital, l indexes patient characteristics, and m

indexes hospital characteristics. Then, zil are patient characteristics (such as patient age

and diagnosis), xjm are hospital characteristics (such as number of nurses per bed), αj are

alternative specific constants in the language of McFadden et al. (1977), and dij is the travel

time between the patient’s zip code and the hospital. The function f(dij;xjmzil) represents

distance interacted with hospital and patient characteristics.

Thus, the first term represents interactions between patient characteristics and hospital

characteristics, the second term interactions between patient characteristics and hospital

indicators, the third term some function of distance interacted with patient and/or hospital

characteristics, and the fourth term αj alternative specific constants. We summarize the

differences between these models in Table III; Web Appendix A6 lists the variables present

in each model. Because we do not have price information in our datasets and most patients

do not pay out-of-pocket for differences between hospitals, we follow Ho (2006, 2009) in not

including price as a covariate; Gaynor et al. (2013) have shown that omitting prices does not

materially affect predictions.
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Our first and simplest model, AggShare, relies exclusively on a set of alternative specific

constants αj to model δ. In other words, all patients within the relevant area have, up to

the logit shock, the same preferences for each hospital. In this framework, patient choice

probabilities are proportional to observed aggregate market shares and can be estimated

with aggregate data.

The most important differentiator among models that allow for patient-level hetero-

geneity is whether or not they assume that patients’ choices can be modeled exclusively in

“characteristics” space (Lancaster, 1966; Aguirregabiria, 2011). We consider two models,

CDS and Char, that model δ using just interactions between patient attributes (age, sex, in-

come, condition, diagnosis) and hospital characteristics (for-profit status, teaching hospital,

nursing intensity, presence of delivery room, etc.) and several interactions between patient

characteristics and travel time. They differ in which patient and hospital characteristics they

include as covariates. In both models, γ and αj are set to zero. CDS is based on Capps et

al. (2003), whereas Char is based on one of the models in Garmon (2017).

Four models include alternative specific constants αj and functions thereof zilαj in ad-

dition to some measures of patient-level heterogeneity. These models differ in their sets of

included variables other than the hospital indicators. The first model, Time, is based on May

(2013), and just includes a set of hospital indicators, travel time, and travel time squared.

The second model, Ho, is based on Ho (2006), and includes αj and interactions between

hospital characteristics and patient characteristics, so βil is non zero. However, it excludes

interactions with hospital indicators, so γ is always zero. The third model, GNT, is based

on Gowrisankaran et al. (2015), and includes a large set of interactions between travel time

and patient characteristics. However, it includes only a small number of interactions of hos-
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pital indicators and hospital characteristics with patient characteristics. Finally, we consider

a fourth model, Inter, that includes interactions of hospital indicators with acuity, major

diagnostic category, and travel time as well as interactions between patient characteristics

and travel time.

Our final model, Semipar, is a semiparametric bin estimator similar to that outlined in

Raval et al. (2017), and does not use data on hospital characteristics. Instead, it parameter-

izes δih by partitioning the space of all patients into a large set of groups, and then assuming

homogeneous preferences within each of those groups. Deterministic utility is δih = δg(zi)h for

some set of groups g(zi) that depend upon patient characteristics zi. Given a set of groups,

predicted choice probabilities can be estimated as the empirical shares of hospitals within

each group.

We place all patients in groups based on their zip code, disease acuity (DRG weight),

age group, and area of diagnosis (MDC). Any patient in a group above the minimum group

size is assigned choice probabilities based upon the share of patients in that group that go to

the various hospitals. We then drop a characteristic, reconstruct groups, and again compute

group-level shares for the full set of patients, both those previously grouped and those not

previously grouped. We drop characteristics in the reverse order listed above (i.e., MDC,

age group, etc.) Then, all patients who have not yet been assigned a choice probability and

are in groups above the minimum group size are assigned a choice probability based on that

round’s group-level shares. We continue until all patients are assigned a choice probability

or there are no more covariates to group on.

Using this approach, we can compute the choice removal diversion ratios using the esti-

mated δ̂j
g
. We set a minimum group size of 50; more details on our implementation of this
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estimator are in Web Appendix A1.

Table III Summary of Tested Models

Model Spatial Differentiation Hospital Quality Patient Interactions

AggShare No Indicators No

Char (Garmon, 2017) Travel Time Characteristics Yes

CDS (Capps et al., 2003) Travel Time Characteristics Yes

Time (May, 2013) Travel Time Indicators No

Ho (Ho, 2006) Travel Time Both Yes

GNT (Gowrisankaran et al., 2015) Travel Time Both Yes

Inter Travel Time Indicators Yes

Semipar (Raval et al., 2017) Zipcode (Groups) Indicators Yes (Groups)

Note: Each row is a stylized depiction of a given model. The first column gives the model
“name” we use in the article and the citation (if applicable), the second column how the model
incorporates spatial differentiation, the third column how the model incorporates differing hospital
quality (through hospital characteristics, indicators, or both), and the fourth column whether the
model incorporates interactions with patient characteristics, which may include race, sex, and age,
as well as the different diagnoses and procedures they have and their relative severity.

Diversion Ratios

Because the logit implies individual level proportional substitution to all other choices when a

given choice is removed from the choice set, the choice probabilities are sufficient to compute

diversion ratios. Thus, for each model, we can estimate diversion ratios by using the models’

predicted choice probabilities.

Under these assumptions, the predicted (aggregate) diversion ratio from the destroyed
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hospital j to non-destroyed hospital k is:

D̂jk =
∑
i

ŝik
1 − ŝij︸ ︷︷ ︸
D̂ijk

ŝij∑
i ŝij︸ ︷︷ ︸
ŵij

, (5)

where ŝij is the predicted probability that patient i chooses to go to hospital j. The aggregate

diversion ratio D̂jk is thus a weighted average of the patient level diversion ratios D̂ijk. The

weights, ŵij, are given by each patient i’s expected share of overall hospital admissions at

the destroyed hospital. All of these choice probabilities are estimated on data from the

pre-period, as would be done in a prospective merger analysis.

Because we observe patient choices post-disaster, we can also compute the observed ag-

gregate diversion ratio for hospital k as the share of hospital j’s patients that hospital k

captured following the destruction of hospital j. In other words,

Djk

observed
=
s
post
k − s

pre
k

s
pre
j

, (6)

where s
post
k is the post merger share of hospital k, s

pre
k is the pre-merger share of hospital

k, and s
pre
j is the pre-merger share of the destroyed hospital. These shares are all computed

based upon the full patient population in each period.

As we describe in Section 5, we compare the predicted diversion ratios from the models

estimated on the pre-period data (D̂jk) to the observed diversion ratios following the natural

disaster (Djk

observed
). Ideally, we need the choice environments to be identical except for

the elimination of the destroyed hospital. In particular, we want that:

1. The distribution of preferences over facilities in the post-disaster period is identical to
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the pre-disaster distribution,

2. The types of patients going to the hospital do not change, and

3. The characteristics of non-destroyed hospitals do not change.

Given these conditions, the observed diversion ratio calculated using the variation in choice

sets caused by the disaster is an unbiased estimate of the true diversion ratio. We compare

this unbiased estimate to those derived from our logit choice models estimated on pre-disaster

data. We examine whether violations of these conditions explain our findings in Section 6.

Implementation

We estimate all of the models separately for each experiment. For all of the models except

Semipar, we use maximum likelihood for estimation on patient-level discharge data from the

pre-disaster period. We report details of our model estimates for these models, including

the number of parameters in the model, the estimated log likelihood of the model, the

AIC and BIC criteria, and McFadden’s pseudo R2, in Web Appendix A2. Inter minimizes

the AIC criterion for five of the six experiments and the BIC criterion for three of the

six experiments. Ho minimizes the AIC criterion for Bellevue and the BIC criterion for

Bellevue and Coney. GNT minimizes the BIC criterion for Sumter. For Semipar, we employ

the algorithm described in Appendix A1 to estimate choice probabilities on patient-level

discharge data from the pre-disaster period.

Given model estimates of choice probabilities, we can predict diversion ratios from the

destroyed hospital to all other hospitals using (5). We also recover observed diversion ratios

with (6) using the pre-period and post-period data. For the New York hospitals, our pre-
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dicted and observed diversion ratios are based on all hospitals in the choice set taken out of

service due to the disaster.

To compute standard errors, we take into account sampling variation in both the pre-

period, where it will affect both observed diversion ratios and predicted diversion ratios

through model estimates of choice probabilities, and in the post-period data, where it will just

affect observed diversion ratios. We account for sampling variation through 200 bootstrap

replications of the pre-period data and post-period data; we re-estimate all the models

and recalculate both model predicted and observed choice removal diversion ratios on these

bootstrap samples. Because our estimates have sampling bias, we use the bootstrap estimates

to bias correct our estimates and compute 95% confidence intervals.

For two models, diversion estimates could not be calculated for every individual for some

of the bootstrap samples of the Sumter disaster.9 For both models, the number of such

circumstances is small, with the average number of admissions with a missing diversion

between 7 and 12. We exclude individuals for whom diversions can not be calculated from

our estimates for these bootstrap samples.

5 Predictive Performance

Across all of the experiments, we estimate 94 choice removal diversion ratios from the

destroyed hospitals to others in patients’ choice sets, including the outside option. We

quantify the quality of model predictions using the prediction error, which we define as

9These issues arise for the Semipar model because for some set of individuals the probability of going to
the destroyed hospital is one in the bootstrap samples, and for the Ho model owing to a particular interaction
term being inestimable.
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D̂jk−Djk

observed
. For example, if the predicted choice removal diversion ratio for a hospital

was 15%, and the observed post-disaster diversion ratio 20%, then the prediction error would

be -5%.

We then compare the prediction error to the observed diversion ratio for the Semipar

model in Figure 2a. In order to facilitate comparisons across alternative specifications, we

evaluate models on the slope of the linear best fit line of the prediction error on the observed

diversion ratio. The slope of this line will be negative when larger observed diversion ratios

have a greater prediction error, and larger in magnitude when the bias is larger. Thus, we

view a model as better predicting aggregate diversion ratios when the magnitude of the slope

is smaller.

Using the linear best fit line, the prediction error is -5% when the observed diversion

ratio is 20%. The slope of the linear best fit line is -0.35, so a one percentage point increase

in observed diversion ratio is associated with an average 0.35 percentage point decrease in

the prediction error for the Semipar model. Thus, we tend to substantially underpredict

large observed diversion ratios.

One potential explanation for these findings is that the composition of patients changes

after the disaster because patients defer treatment following the disaster. All else equal, one

might think that such deferrals would be more pronounced for elective procedures, rather

than urgent or emergency admissions. If such patients have consistently different tastes, such

as a greater disutility from travel, then this might produce results akin to those we find.

To address this possibility, we re-estimate all of the models using only non-elective admis-

sions. We then examine the predictive performance of our models for non-elective admissions

23



(a) Full Sample

(b) Non Elective Sample

Figure 2 Prediction Error By Observed Choice Removal Diversion Ratio

Note: Each point represents the diversion ratio to a hospital from one of the six experiments. The
blue line is the linear regression line through the points, and the grey shading the 95% confidence
interval for the linear regression line. The top figure contains the results for the full sample and the
bottom figure contains the results for the non-elective sample.
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before and after the disaster.10 Figure 2b presents the analogue to Figure 2a for the non-

elective sample. It shows similar patterns to those for the full sample. The slope coefficient

on the best fit line is −0.43 for the Semipar model for the non-elective sample, compared to

−0.35 for the full sample, so the models perform worse on the non-elective sample.11

We now focus the remainder of our analysis on the non-elective sample. We present the

full sample analogues of all figures and tables in Web Appendix A4 and Web Appendix A5.

In addition, to compare across models and disasters, we focus on the slope of the best fit

line in a regression of the prediction error on observed diversion ratios:

Cov(D̂jk −Djk

observed
, Djk

observed
)

V ar(Djk

observed
)

(7)

The slope directly connects to Figure 2 as it is the slope of the blue best fit line, and is

negative if larger observed diversion ratios imply greater underprediction of the diversion

ratio as it grows larger. Given that diversion ratios sum to one, the intercept of the best

fit line is a function of the slope parameter, so the slope shows the degree of bias in the

estimates.

More formally, the y intercept in the regression of the prediction error on observed diver-

sion ratios is equal to −β1T
N

, where T is the number of experiments, N is the total number of

hospitals across all experiments, and β1 the slope coefficient as above. To see this, consider

that we model Dpredicted
kt −Dobserved

kt = β0 + β1Dobserved
kt + εkt, where k indexes hospitals and t

10We define non-elective admissions as admissions coded as “Emergency” or “Urgent” in the admission
type variable or coded as a labor and delivery, either through the admission type variable (if applicable) or
a Major Diagnostic Category (MDC) of 14.

11Descriptive statistics for the sample of non-elective patients are presented in Table A15 in Web Ap-
pendix A5.
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Figure 3 Slope Coefficient of Observed Choice Removal Diversion Ratios on Prediction
Error, Non-Elective Sample

Note: The left figure depicts the slope of the observed diversion ratio on the prediction error by
experiment for the Semipar model, whereas the right figure depicts the same by model. Bars repre-
sent 95% confidence intervals computed from 200 bootstrap replications; we also apply a bootstrap
bias correction. See Table A16 and Table A17 for tables of the estimates and confidence intervals
used to generate these figures.

markets. Because within each market the sum of both the predicted and observed diversion

ratios must sum to one and
∑

k ε̂k = 0, we have 0 = Nβ̂0 + T β̂1, where the hat denotes an

estimated value. Then solving for β0 yields the expression above.

We depict this slope for each experiment for the Semipar model in Figure 3a. The finding

that we consistently underpredict large diversion ratios is not being driven by particularly

poor predictive performance in one disaster. The slope coefficient is between −0.5 and

−0.75 for four disasters, and we can reject that the slope is equal to zero for all disasters

but Bellevue.

Figure 3b demonstrates that we underpredict high diversion ratio hospitals in all of

the models we estimate. However, the models can be divided into two groups in terms
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of their accuracy. The aggregate share model, and the two models that do not include

alternative specific constants, Char and CDS, have slope coefficients of around -0.6, so a 10

percentage point increase in the observed diversion ratio decreases the prediction error by

6 percentage points. By contrast, models that use the individual level data to allow spatial

differentiation, and also allow unobserved vertical quality via alternative specific constants

have slope coefficients of slightly under -0.4 on average. That is, the magnitude of the slope

coefficient declines by 25 to 30 percent when accounting for these two features of demand in

the model.

To understand what may be driving the differences across models, we decompose the

choice removal diversion ratio from hospital j to hospital k (D̂jk) into two components12:

D̂jk =
∑
i

D̂ijk ŝij∑
i ŝij

= E[Dijk]︸ ︷︷ ︸
Individual

+
Cov(Dijk, sij)

E(sij)︸ ︷︷ ︸
Heterogeneity Factor

. (8)

The first term is the average individual level (indexed by i) choice removal diversion ratio in

the data. The second term, which we call the “heterogeneity factor”, increases when patients

with a larger probability of going to the destroyed hospital j also have a larger probability

of going to hospital k.

In Figure 4, we depict the slope coefficient of the observed diversion ratio on the prediction

error after either including the heterogeneity factor in the predicted diversion in red, or

12The derivation is below:

D̂jk =
∑
i

D̂ijk ŝij∑
i ŝij

=
1

N

∑
i

D̂ijk +
∑
i

D̂ijk(
ŝij∑
i ŝij

− 1

N
) =

1

N

∑
i

D̂ijk +

∑
i D̂

ijk(ŝij − 1
N

∑
i ŝij)

1
N

∑
i ŝij

= Ei[D
ijk] +

Covi(D
ijk, sij)

Ei(sij)
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Figure 4 Decomposition of Average Predicted Diversion, Non-Elective Sample

Note: We report the slope coefficient of the observed diversion ratio on the prediction error based
upon the average individual diversion ratio in blue, and based upon the individual diversion ratio
plus the heterogeneity factor (i.e. the total predicted diversion) in red, for each model. Each term
is as defined in the text. See Table A18 for a table of the estimates and confidence intervals used
to generate this figure and Figure A2 and Table A26 for the equivalent figure and table for the full
sample.
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excluding it in blue. The models that perform badly do so for different reasons. The

magnitude of the slope coefficient for AggShare excluding the heterogeneity factor is smaller

than for CDS and Char. However, its heterogeneity factor is zero as it does not allow for

any heterogeneity in choice probabilities.

For the CDS and Char models, the decrease in magnitude of the slope coefficient due to

the heterogeneity factor is similar to the models that perform well. However, the magnitude

of the slope coefficient based on the prediction error using just the expected individual diver-

sion ratio is much greater than the other models. Therefore, these models perform poorly for

different reasons – the aggregate share model does not allow for horizontal differentiation,

whereas CDS and Char are worse at estimating vertical quality because they do not allow

for alternative specific constants.

In addition, all of the models that include alternative specific constants and controls for

patient location – Time, Ho, GNT, Inter, and Semipar – have similar values of the slope

coefficient including, and excluding, the heterogeneity factor. This similar performance is

despite the fact that they vary substantially in the degree of heterogeneity they allow across

different types of patients. For example, Time allows no heterogeneity in preferences over

vertical quality or travel time across patients, whereas Semipar allows preferences to vary

in an unrestricted fashion across many narrowly defined groups. This similarity suggests

that allowing greater heterogeneity on observed patient characteristics does not consistently

improve estimates of diversion ratios.
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6 Mechanisms

We now examine why all of the models underpredict large diversion ratios. First, we show

that we underpredict diversion to nearby hospitals and overpredict diversion to the outside

option. One explanation for this is unobserved heterogeneity in the disutility for travel. We

then estimate random coefficient models that allow such unobserved heterogeneity, and find

significant improvements in model performance. Second, we examine the effects of potential

changes to physician labor supply due to the disaster. Finally, we consider a number of other

potential explanations, and find evidence against explanations due to capacity constraints

and changes in patient composition.

Preference Heterogeneity in Travel Time

The average prediction error increases with the average distance of a hospital to patients in

the service area. Figure 5a replicates Figure 2b, except with average travel time expressed as

a percentage of the market average travel time on the X axis. Because the hospitals grouped

in the outside option are typically located farther away than the other choices, we assign the

outside option hospitals (shown in red on the figure) the maximum travel time of any choice

in the choice set.

Figure 5a shows that the Semipar model underpredicts diversion to hospitals with less

than the average travel time, and overpredicts diversion to more distant hospitals and, espe-

cially, the outside option. Figure 5b depicts the average prediction error for each model for

hospitals that are below the average distance, above the average distance, or either above
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the average distance or the outside option. For the Semipar model, the average prediction

error is -1.2 percentage points for hospitals in the choice set less than the average travel time

away from the destroyed hospital. By contrast, the average prediction error is 0.1 percentage

points for hospitals more than the mean time away, and 0.86 percentage points for hospitals

more than the mean time away or the outside option. For the outside option, the average

prediction error is a full 7.4 percentage points!

(a) By Model
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(b) Average Prediction Error by Distance Group

Figure 5 Prediction as a Function of Distance, Non-Elective Sample

Note: First panel shows the prediction error as a function of the average travel time to the
hospital expressed as a percent of the average travel time in the market. Second panel presents the
average prediction error, differentiating between hospitals whose travel time is below average for their
market, above average for their market, or above average plus the Outside Option. Bars represent
95% confidence intervals computed from 200 bootstrap replications; we also apply a bootstrap bias
correction. See Table A19 for tables of the estimates and confidence intervals used to generate these
figures.

Observed Consumer Heterogeneity The estimates above showed that we underpredict

diversion to nearby hospitals and substantially overpredict the outside option. One explana-

tion for these results is that the models we estimate are missing interactions between travel

time and components of consumer heterogeneity.

Many of the models we estimate allow for both the effects of patient location and hospital
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quality to vary by patient characteristics, including diagnosis, race, gender, and age. In

Figure 6, we show that interactions with such characteristics do improve predictions of

individual patients’ choices. We measure the quality of patients’ choice predictions by the

share of individual predictions that are correctly predicted, in that the patient goes to the

hospital predicted to be most likely by the econometric model. In general, models allowing

more individual heterogeneity do a better job predicting patients’ choices.
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Figure 6 Average Percent Correct of Individual Predictions vs. Slope Coefficient of Ob-
served Diversion Ratio on Prediction Error, Non-Elective Sample

Note: The Figure compares the slope coefficient of the observed diversion ratio on the prediction
error to the average percentage of individual choices correctly predicted. Bars represent 95% confi-
dence intervals computed from 200 bootstrap replications; we also apply a bootstrap bias correction.
See Table A16 and Table A20 for estimates and confidence intervals used to generate the figure.

However, better predictions of individual choices are not associated with better predic-

tions of diversion ratios. For example, whereas Semipar is, on average, the best performing
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of the models in predicting individual patient choices following the disasters, it has approx-

imately the same slope coefficient as Time, which does much worse at predicting patient

choices. These results suggest that allowing for preference heterogeneity using observed pa-

tient characteristics better fits the individual component of patient choice, but does not help

to predict the common component across patients that may be more relevant for aggregate

diversion ratios.

Unobserved Consumer Heterogeneity Instead, patients may differ in their willingness

to travel in ways that our observed characteristics do not capture. Patients who would have

gone to the destroyed hospital, and so were forced to switch, could have less willingness to

travel than the “average” patient in the service area in the pre-period. In that case, patients

who traveled long distances in the pre-disaster period might provide poor comparisons for

otherwise observably similar patients in the post-disaster period.

We test the hypothesis that patients have heterogeneous travel costs by estimating a series

of random coefficient logit models that allow for a normally distributed random coefficient

on travel time. Because of the computational cost, we restrict attention to the simple

Time model that includes only travel time and hospital specific indicators as explanatory

variables. Using this approach, we trace out the post-disaster predictive performance of

different standard deviations of the random coefficient on travel time. As in our previous

analysis, we estimate each model for a given standard deviation of the random coefficient on

the pre-disaster data and then test its predictive power on the post-disaster data. However,

unlike our previous analysis, this approach implicitly uses the post-disaster variation to

estimate the standard deviation of the random coefficient.
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We make a number of modifications to our baseline analytical framework to facilitate

estimation of the random coefficient models. First, patients with a greater disutility for

travel will likely have a lower utility from the outside option, because patients going to the

outside option typically travel further than for the other options. For each disaster, we set

the distance of the outside option to the maximum distance from any patient zip code to

any hospital in the choice set. In practice, this means we are setting the outside option to

zero (as before) but all other choices have their distance and squared distance as time −

max time and (time2 − max time2), respectively.

Second, the random coefficient on travel time is a draw from a normal distribution mul-

tiplied by the distance coefficient estimate from the model without a random coefficient. We

do this to scale the variance for each disaster in a way that allows for cross-disaster com-

parisons of the standard deviation of the random coefficient. We then allow the standard

deviation of this normal distribution to vary along a grid evenly spaced between 0 and 1.5.

Using the post-disaster data, we compute the mean squared error between predicted and

observed diversion ratios for each standard deviation of the random coefficient. In Figure 7,

we show the Mean Squared Prediction Error as a function of the standard deviation of the

random coefficient. In this figure, the mean squared error is averaged over all of the disasters.

Adding the random coefficient improves the models’ predictions of diversion ratios.

We use two different approaches to estimate the standard deviation over the grid con-

sidered. In the first, Common SD, we compute the optimal standard deviation averaging

across all experiments (the approach in Figure 7). One concern with this approach is that

we overfit the data by adding in the variation of the random coefficient as a free parameter.

Therefore, in the second, LOO SD, we use a leave one out approach, picking the grid value
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for a given experiment that minimizes prediction errors for all other experiments. In this

implementation, there is no concern of overfitting, as the data set of the estimation differs

from that of testing the predictions.

Figure 7 MSE by Standard Deviation of Random Coefficient

Note: This figure shows the mean squared prediction error (MSE) of the Common SD class of
models described in the text, where the models vary by the standard deviation of the random
coefficient.

In Figure 8a, we present the slope coefficient between the actual choice removal diversion

ratio and the prediction error for the different models. Consistent with the results in Figure 3,

we find that, without a random coefficient on travel time, the slope coefficient is −0.43.

However, the slope coefficient falls in magnitude to approximately −0.32 for Common SD

and −0.35 for the LOO SD models. In Figure 8b, we compare the random coefficient models

to the Zero SD model. This graph shows a 20% decline in magnitude of the slope coefficient
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Figure 8 Random Coefficient Relative Performance

Note: The left panel presents the slope of the observed diversion ratio on the prediction error.
The right panel depicts the slope for a model relative to that for the Zero SD model. 95% confidence
intervals are computed from 200 bootstrap replications; we also apply a bootstrap bias correction.
See Table A23 for estimates and confidence intervals used to generate the figure.

for LOO SD and 25% for Common SD relative to Zero SD. We can reject the null hypothesis

of no improvement.

Overall, we take these results as evidence that preference heterogeneity in travel time

could explain some of the underprediction of diversion to nearby hospitals, and overpre-

diction of diversion to the outside option. More generally, they suggest that allowing for

unobserved heterogeneity through random coefficients may lead to better predictions even

when economists have access to rich individual level data that allows them to model observed

heterogeneity.

Physician Labor Supply

Another set of explanations for our findings is the interaction between physician choice and

hospital choice. As Ho and Pakes (2014) point out, demand models estimate a “reduced

form” referral function that combines patient preferences and physician referral patterns.
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The model specifications described in Section 4 do not include a role for physician choice,

because referring physicians are not observed in most hospital discharge datasets. Physician

choice could affect our analysis in three major dimensiosn.

First, even if the disaster does not affect physician labor supply, both Beckert (2018)

and Raval and Rosenbaum (2021) show that accounting for referral patterns can lead to

substantially different substitution patterns between hospitals. The clinicians of patients

who went to the destroyed hospital might have different referral patterns than the clinicians

of other patients in the service area. Thus, we might underpredict certain hospitals if the

clinicians of patients who went to the destroyed hospital tend to refer to those hospitals.

We illustrate how referring patterns can distort diversion ratios through the following ex-

ample in which the referring physician induces the patient’s consideration set. Patients are

differentiated by their unobserved referring clinician; pre-disaster 50% go to the destroyed

hospital, 15% to hospital A and 35% to hospital B. There are two referring clinicians. Clin-

ician 1, who cares for half of all patients, refers to all hospitals, with shares of 40% to the

destroyed hospital, 30% to A, and 30% to B. Clinician 2, who cares for the other half, in-

cludes only the destroyed hospital and hospital B in patient consideration sets, with shares of

60% to the destroyed hospital, 0% to A, and 40% to B. Assuming diversion proportional to

share, we would estimate diversions of 30% to A and 70% to B from the destroyed hospital.

However, because 40% of the destroyed hospital’s patients come from clinician 1 and 60%

from clinician 2, the true diversion ratio to A is 0.4*0.5 = 20% and to B is 0.4*0.5 + 0.6*1

= 80%. Thus, the model underpredicts the higher diversion by not accounting for referral

patterns.

Another potential explanation for our findings is that physicians switch hospitals or lo-

37



cations post-disaster. If operating physicians at the destroyed hospitals moved to underpre-

dicted hospitals, this could explain our findings. We examine this explanation for the New

York hospitals, where we have data on operating physicians both pre- and post-disaster.

We do find evidence that physicians moving to a different hospital may have affected

diversion ratios for the NYU service area. For regular NYU clinicians, 45% of the admissions

in the post-disaster period were at Lenox Hill hospital.13 This is consistent with reports that

Lenox Hill actively welcomed NYU physicians to practice there post-disaster.14 Our models

considerably underpredict diversion to Lenox Hill for NYU; Semipar predicts a diversion

ratio of 7.0% compared to an observed diversion of 20.0%.15 Lenox Hill is the only large

observed diversion ratio for NYU that we underpredict. Notably, we did not find similar

patterns for regular Bellevue and Coney Island clinicians.

Third, physicians at the destroyed hospitals might not practice at all until the hospital

is rebuilt, forcing patients to switch doctors as well as hospitals. Their new doctors might

have substantially different referral patterns than their old doctors, so that demand post-

disaster is quite different from demand pre-disaster. We indeed find that the level of total

admissions at all hospitals for physicians who were regular doctors at the destroyed hospital

fell substantially, by 60% for doctors at NYU, 87% for doctors at Bellevue, and almost

94% for doctors at Coney.16 If patients switch to doctors located closer to them, and their

new doctors also prefer nearby hospitals, we might expect greater diversion to proximate

13To maximize observations, we do not limit attention to non-elective admissions for this exercise. However,
the same pattern is evident in the non-elective sample.

14See https://www.nytimes.com/2012/12/04/nyregion/with-some-hospitals-closed-after-

hurricane-sandy-others-overflow.html.
15In the overlapping Bellevue service area, Semipar predicts a diversion ratio of 6.1% to Lenox Hill com-

pared to an observed diversion of 14.4%. This could, at least in part, reflect the fact that our diversion ratios
for New York combine multiple destroyed hospitals.

16We define a “regular doctor” as one with at least 30 admissions in January through September of 2012.
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hospitals.

Additional Explanations

Capacity Constraints Post-merger, if some hospitals faced capacity constraints inhibit-

ing their ability to accommodate all of the patients that wished to receive care, our models

would overpredict diversion to them and underpredict diversion to other hospitals. We ex-

amine this issue in our different markets using information on the total number of patients

admitted and the number of beds. We measure capacity as the number of admitted patients

divided by the number of beds, and define a hospital as “capacity constrained” if its capacity

is above 90%. For the Sumter and St. John’s disasters, we have data on the date that each

patient was admitted and discharged, and so can explicitly measure capacity for each day.

For the Moore and Sandy disasters, we have data on the month of admission and discharge.

We thus calculate monthly capacity as a sum of each patient’s length of stay for patients

admitted in that month divided by the total number of days in the month. Although crude,

we compare this capacity measure to true capacity for the hospitals in the choice set for

Sumter and find that it is approximately unbiased.

For the most part, we do not see evidence of hospitals facing binding capacity constraints,

let alone that the disaster created such problems. No hospitals are capacity constrained

using our capacity utilization measure for Sumter and Moore. For St. John’s in California,

only one hospital is capacity constrained both before and after the disaster. In New York,

however, five hospitals move from never constrained before the disaster to constrained in

both months after the disaster. All five are in Coney Island’s choice set, two in NYU’s,
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and one in Bellevue’s. Contrary to what we would expect if the new capacity constraints

drove our results, we underpredict diversion for three of these hospitals and correctly predict

diversion for two. Thus, it does not appear that capacity constraints explain our findings.

Strategic Investments Our findings could also be explained by hospitals making strategic

investments in quality post-disaster. For example, if competitor hospitals targeted outreach

to patients living near the destroyed hospital, such strategic investments might have affected

patients’ preferences over the options available to them. Because switching costs for hospitals

are large (Shepard, 2016; Raval and Rosenbaum, 2018), the destruction of the hospital, by

forcing patients to switch, may have incentivized competitors to try to attract the destroyed

hospital’s patients while doing so was relatively easy. To account for the observed patterns,

we would need these investments to occur disproportionately at more proximate, highly-

desired hospitals.

Unfortunately, such strategic investments are difficult to observe in the data available to

us. However, we can see merger activity, which might be indicative of an interest in serving

affected patients. Following two disasters, we do see a hospital with a large diversion ratio

from the destroyed hospital attempting to merge with the destroyed hospitals once they

were rebuilt. After the Northridge earthquake, UCLA Medical Center, which had a large,

underpredicted diversion, attempted to purchase St. John’s, the destroyed hospital. After

merger talks broke down approximately one year following the disaster, UCLA bought Santa

Monica Hospital, the only other hospital in Santa Monica. In Georgia, Sumter Regional, the

destroyed hospital, merged with Phoebe Putney, which also had a large and underpredicted

diversion post-disaster.
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Such merger activity might reflect post-disaster strategic investments. Alternatively,

rebuilding a hospital is a major capital investment and engaging in a merger may have been

the best way to secure the required funds to rebuild the destroyed hospitals.

Change in Patient Composition As noted already, one possible explanation for the

prediction error that we find would be changes in patient composition post-disaster. We

have already restricted attention to non-elective visits, but there might have been other

types of changes. For example, patients could have left the service area after the disaster,

perhaps because their homes or workplaces were damaged. In Table IV, we examine this

issue by reporting the number of admissions per month in the pre-disaster period compared

to the post-disaster period. The number of admissions per month post-disaster falls in all

service areas except NYU, ranging from 3 percent for Coney, 5 percent for St. John’s,

8 percent for Bellevue, and 11 percent for Sumter and Moore. This likely reflects some

extensive margin in inpatient admissions, consistent with the findings of Petek (2016) from

hospital exits. We do not find major changes in case mix after the disaster, except for a

rise in pregnancy admissions across the service areas (which are hard to defer) and a fall in

the under 18 share of patients for Sumter and Moore. Thus, the data do not reveal obvious

changes to patient populations before and after the disaster. We further examine changes in

patient composition in Web Appendix A3.

Another reason why patient composition could change is that post-disaster damage could

affect patients, either because they move residence, have disaster related medical complica-

tions, or face income shocks because the disaster affected their job. We examine this possi-

bility for the Sumter, Coney, and St. John’s experiments by removing zip codes with greater
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Experiment Pre-Period Post-Period Percent Change

Sumter 371.20 329.20 -11.30
StJohns 2728.20 2589.20 -5.09
NYU 6335.30 6357.00 0.34
Moore 393.20 350.10 -10.95
Coney 3664.00 3560.00 -2.84
Bellevue 3650.60 3357.50 -8.03

Table IV Admissions Per Month by Period, Non-Elective Sample

disaster related damage.

For Sumter, we remove the two zip codes comprising the city of Americus; the destruction

of the Americus tornado was concentrated in the city of Americus.17 For Coney Island,

we remove three zip codes which had the most amount of damage after the disaster, as

based on post-disaster claims to FEMA; these zip codes are on the Long Island Sound and

thus suffered more from flooding after Sandy.18 For St. John’s, we remove zip codes with

structural damage based on zip code level data from an official report on the Northridge

disaster for the state of California. This procedure removes 9 zip codes, including all 5 zip

codes in Santa Monica.19

We do not remove any areas for NYU or Bellevue, as the area immediately close to these

hospitals had very little post-Sandy damage. For Moore, removing the zip codes through

which the tornado traversed would remove almost all of the patients from the choice set, so

we do not conduct this robustness check for Moore.

The areas removed tend to have higher market shares for the destroyed hospital. Thus,

17The zip codes removed are 31719 and 31709.
18We removed 11224, 11235, and 11229 for Coney. See http://www.arcgis.com/home/webmap/viewer.

html?webmap=f27a0d274df34a77986f6e38deba2035 for Census block level estimates of Sandy damage based
on FEMA reports.

19We removed 90025, 90064, 90401, 90402, 90403, 90404, 90405, 91403, and 91436. The US Geo-
logical Survey defines MMI values of 8 and above as causing structural damage. See ftp://ftp.ecn.

purdue.edu/ayhan/Aditya/Northridge94/OES%20Reports/NR%20EQ%20Report_Part%20A.pdf, Appendix
C, for the Northridge MMI data by zip code.
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removing destroyed areas cuts Sumter’s market share from 51 percent to 30 percent, St.

John’s market share from 17 to 14 percent, and Coney’s from 16 to 9 percent. We then

compare the slope coefficient of the observed diversion ratio on the prediction error for all

patients for these three experiments to just patients living in zip codes with less damage in

Figure 9.

The magnitude of the slope coefficient is higher just examining patients that lived in

locations with less disaster damage, making it unlikely that such damage can explain our

results. For example, for Semipar, the slope coefficient is −0.37 for all patients for these three

experiments, compared to −0.46 for patients living in locations with less disaster damage.

Finally, the demand models we estimate can take changes in observed patient character-

istics into account when predicting diversion ratios. We do so by using estimates of all the

models from pre-disaster data, as before, but estimating hospital probabilities for the post-

period patients as well as pre-period patients. Formally, this estimate of the diversion ratio

from j to k is the average hospital probability for k in the post-disaster period minus the

average hospital probability for k in the pre-disaster period, divided by the average hospital

probability for j in the pre-disaster period:

D̂jk =

1
Npost

∑
i∈Ipost ŝik −

1
Npre

∑
i∈Ipre ŝik

1
Npre

∑
i∈Ipre ŝij

, (9)

where ŝik is the predicted probability that patient i chooses to go to hospital k, and Ipost and

Ipre are the set of patients in the post-disaster period and pre-disaster period, respectively.

We find almost exactly the same patterns of underprediction of large diversion ratios

using the composition adjusted estimates. For Semipar, the slope coefficient is −0.41 (95%
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Figure 9 Slope Coefficient of Observed Diversion Ratio on Prediction Error By Disaster
Damage, Non-Elective Sample

Note: The figure depicts the slope of the observed diversion ratio on the prediction error. The
figure uses only data from the Coney, St. John’s, or Sumter experiments, and includes either all
patients or patients in zip codes with less disaster damage. Bars represent 95% confidence intervals
computed from 200 bootstrap replications; we also apply a bootstrap bias correction. See Table A21,
and Table A22 for tables of the estimates and confidence intervals used to generate this figure.

CI (−0.46,−0.36)) after adjusting for composition, compared to −0.43 using our baseline

diversion estimates.

7 Conclusion

In this article, we compare estimates obtained from econometric models to those obtained

from exogenous quasi-experiments. Our qualitative conclusions are robust across markets.

First, we find that standard models of hospital demand substantially underpredict large
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diversion ratios. Second, models allowing spatial differentiation and including alternative

specific constants are substantially better at predicting diversion ratios than other models.

Third, we do not find that models that allow greater heterogeneity on observed patient

characteristics, and so predict individual choices better, are also better at predicting diversion

ratios.

However, even with rich micro-data, there can still be important unobserved heterogene-

ity in preferences. One explanation for our findings is that patients differ in their disutility

for travel time, which might explain why we tend to underpredict nearby hospitals and over-

predict the outside option hospital. We find a significant improvement in the prediction of

diversion ratios after allowing for patient heterogeneity in travel time via random coefficients.

Separately, physician labor supply could also change due to the disaster, with physicians

switching to different hospitals or not practicing during the disaster. Such changes in physi-

cian labor supply would affect patient choice when physician referral patterns are important.

Better understanding how physician choice interacts with hospital choice is extremely impor-

tant, especially as mergers that combine hospitals and physician groups have become more

common.

Overall, the main potential limitation of our findings lies in the difference between a

hospital becoming unavailable to patients as a result of a natural disaster and a hospital

becoming unavailable as a result of an inability to agree on contractual terms. First, the

aftermath of the disaster may induce more short run changes in patient behavior than a

network exclusion. Second, a breakdown of hospital-payer negotiations would make the

hospital unavailable to the customers of that payer, rather than all patients, and these

customers could switch to a different insurer. We hope that future research can clarify the
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extent to which such factors could lead to different patterns than we identify here.
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A Disaster Details

In this section, we give a brief narrative description of the destruction in the areas surround-

ing the destroyed hospitals, as well as maps for the disasters. In each figure, zip codes in the

service area are outlined and disaster damage is shaded as indicated.

St. John’s (Northridge Earthquake)

On January 17th, 1994, an earthquake rated 6.7 on the Richter scale hit the Los Angeles

Metropolitan area 32 km northwest of Los Angeles. This earthquake killed 61 people, injured

9,000, and seriously damaged 30,000 homes. According to the USGS, the neighborhoods

worst affected by the earthquake were the San Fernando Valley, Northridge and Sherman

Oaks, whereas the neighborhoods/cities of Fillmore, Glendale, Santa Clarita, Santa Monica,

Simi Valley and western and central Los Angeles also suffered significant damage.20 Over

1,600 housing units in Santa Monica alone were damaged with a total cost of $70 million.21

Figure 14 shows that the damage in the Los Angeles area was more widespread than the

other disasters; we depict the intensity of earthquake shaking with darker green shading.

Whereas the Santa Monica area was particularly hard hit, many areas nearby received little

structural damage from the earthquake.

The earthquake damaged a number of major highways of the area; in our service area,

the most important was the I-10 (Santa Monica Freeway) that passed through Santa Monica.

It reopened on April 11, 1994.22 By the same time, many of those with damaged houses had

20See http://earthquake.usgs.gov/earthquakes/states/events/1994_01_17.php.
21See http://smdp.com/santa-monicans-remember-northridge-earthquake/131256.
22See http://articles.latimes.com/1994-04-06/news/mn-42778_1_santa-monica-freeway.
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found new housing.23

Santa Monica Hospital, located close to St. John’s, remained open but at a reduced

capacity of 178 beds compared to 298 beds before the disaster. In July 1995, Santa Monica

Hospital merged with UCLA Medical Center.24 St. John’s hospital reopened for inpatient

services on October 3, 1994, although with about half of the employees and inpatient beds

and without its North Wing (which was razed).25

Sumter (Americus Tornado)

On March 1, 2007, a tornado went through the center of the town of Americus, GA, damaging

993 houses and 217 businesses. The tornado also completely destroyed Sumter Regional

Hospital. An inspection of the damage map in Figure 1 and GIS maps of destroyed structures

suggests that the damage was relatively localized – the northwest part of the city was not

damaged, and very few people in the service area outside of the town of Americus were

affected.26 Despite the tornado, employment remains roughly constant in the Americus

Micropolitan Statistical Area after the disaster, at 15,628 in February 2007 before the disaster

and 15,551 in February 2008 one year later.27

Although Sumter Regional slowly re-introduced some services such as urgent care sooner,

they did not reopen for inpatient admissions until April 1, 2008 in a temporary facility with

76 beds and 71,000 sq ft of space. Sumter Regional subsequently merged with Phoebe Putney

23See http://www.nytimes.com/1994/03/17/us/los-angeles-is-taking-rapid-road-to-recovery.

html?pagewanted=all.
24See http://articles.latimes.com/1995-07-21/business/fi-26439_1_santa-monica-hospital-

medical-center.
25See http://articles.latimes.com/1994-09-23/local/me-42084_1_inpatient-services.
26See https://www.georgiaspatial.org/gasdi/spotlights/americus-tornado for the GIS map.
27See http://beta.bls.gov/dataViewer/view/timeseries/LAUMC131114000000005;jsessionid=

212BF9673EB816FE50F37957842D1695.tc_instance6.
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Hospital in October 2008, with the full merge completed on July 1, 2009. On December 2011,

a new facility was built with 76 beds and 183,000 square feet of space.28

NYU, Bellevue, and Coney Island (Superstorm Sandy)

Superstorm Sandy hit the New York Metropolitan area on October 28th - 29th, 2012. The

storm caused severe localized damage and flooding, shutdown the New York City Subway

system, and caused many people in the area to lose electrical power. By November 5th,

normal service had been restored on the subways (with minor exceptions).29 Major bridges

reopened on October 30th and NYC schools reopened on November 5th.30 By November

5th, power was restored to 70 percent of New Yorkers, and to all New Yorkers by November

15th.

FEMA damage inspection data reveals that most of the damage from Sandy occured in

areas adjacent to water.31

We depict the flooding from Hurricane Sandy in Figure 11 to Figure 13 for each of the

service areas in green shading. Flooding primarily affected areas adjacent to water. The

actual damage in Manhattan from Sandy – most of which classified by FEMA as “Minor”

damage – was concentrated in a relatively small part of the Manhattan hospitals’ service

areas. For Coney Island, most of the flooding affected the three zip codes at the bottom

of the service area that are directly adjacent to Long Island Sound. Even at the island tip,

most block groups suffered less than 50 percent damage.

28See https://www.phoebehealth.com/phoebe-sumter-medical-center/phoebe-sumter-medical-

center-about-us and http://www.wtvm.com/story/8091056/full-medical-services-return-to-

americus-after-opening-of-sumter-regional-east.
29See http://web.mta.info/sandy/timeline.htm.
30See http://www.cnn.com/2013/07/13/world/americas/hurricane-sandy-fast-facts/.
31See the damage map at https://www.huduser.gov/maps/map_sandy_blockgroup.html.
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NYU Langone Medical Center suffered about $1 billion in damage due to Sandy, with its

main generators flooded. Although some outpatient services reopened in early November, it

partially reopened inpatient services on December 27, 2012, including some surgical services

and medical and surgical intensive care. The maternity unit and pediatrics reopened on

January 14th, 2013. 32 Although NYU Langone opened an urgent care center on January

17, 2013, a true emergency room did not open until April 24, 2014, more than a year later.33

Bellevue Hospital Center reopened limited outpatient services on November 19th, 2012.34

However, Bellevue did not fully reopen inpatient services until February 7th, 2013.35 Coney

Island Hospital opened an urgent care center by December 3, 2012, but patients were not

admitted inpatient. It had reopened ambulance service and most of its inpatient beds by

February 20th, 2013, although at that time trauma care and labor and delivery remained

closed. The labor and delivery unit did not reopen until June 13th, 2013.36

Moore (Moore Tornado)

A tornado went through the Oklahoma City suburb of Moore on May 20, 2013. The tornado

destroyed two schools and more than 1,000 buildings (damaging more than 1,200 more) in

the area of Moore and killed 24 people. Interstate 35 was briefly closed for a few hours due

32See http://www.cbsnews.com/news/nyu-langone-medical-center-partially-reopens-after-

sandy/.
33See http://fox6now.com/2013/01/17/nyu-medical-center-reopens-following-superstorm-

sandy/ and http://www.nytimes.com/2014/04/25/nyregion/nyu-langone-reopens-emergency-room-

that-was-closed-by-hurricane-sandy.html.
34See http://www.cbsnews.com/news/bellevue-hospital-in-nyc-partially-reopens/.
35See

http://www.nbcnewyork.com/news/local/Bellevue-Hospital-Reopens-Sandy-Storm-East-River-

Closure-190298001.html.
36See http://www.sheepsheadbites.com/2012/12/coney-island-hospital-reopens-urgent-care-

center/, http://www.sheepsheadbites.com/2013/02/coney-island-hospital-reopens-er-limited-

911-intake/, and http://www.sheepsheadbites.com/2013/06/photo-first-post-sandy-babies-

delivered-at-coney-island-hospital-after-labor-and-delivery-unit-reopens/.
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Figure 10 Damage Map in Moore, OK

Note: The green area indicates the damage path of the tornado. The zip codes included in the
service area are outlined in pink. Sources: NOAA, OK Discharge Data

to the storm.37 We depict the tornado’s path in Figure 10 in green; although some areas

were severely damaged, nearby areas were relatively unaffected.38

Emergency services, but not inpatient admissions, temporarily reopened at Moore Med-

ical Center on December 2, 2013. Groundbreaking for a new hospital took place on May 20,

2014, and the new hospital reopened in May 2016.39

B Dataset Construction

This section provides more detail on the information in Table I. For each disaster, we

estimate models on the pre-period prior to the disaster and then validate them on the period

37See http://www.news9.com/story/22301266/massive-tornado-kills-at-least-51-in-moore-

hits-elementary-school.
38See http://www.srh.noaa.gov/oun/?n=events-20130520 and http://www.nytimes.com/

interactive/2013/05/20/us/oklahoma-tornado-map.html for maps of the tornado’s path.
39See https://www.normanregional.com/en/locations.html?location_list=2 and http://kfor.

com/2013/11/20/moore-medical-center-destroyed-in-tornado-to-reopen-in-december/.
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Figure 11 Damage Map for NYU Service Area

Note: Green shading represents flooded areas. The zip codes included in the service area are
outlined in pink. Sources: FEMA, NY Discharge Data

Figure 12 Damage Map for Bellevue Service Area

Note: Green shading represents flooded areas. The zip codes included in the service area are
outlined in pink. Sources: FEMA, NY Discharge Data

after the disaster. We omit the month of the disaster from either period, excluding anyone

either admitted or discharged in the disaster month. The length of the pre-period and post-

period in general depends upon the length of the discharge data that we have available.
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Figure 13 Damage Map for Coney Island Service Area

Note: Green shading represents flooded areas. The zip codes included in the service area are
outlined in pink. Sources: FEMA, NY Discharge Data

Table Ib contains the disaster date and the pre-period and post-period for each disaster,

where months are defined by time of admission.

NYU hospital began limited inpatient service on December 27, 2012; unfortunately, we

only have month and not date of admission and so cannot remove all patients admitted after

December 27th. Right now, we drop 65 patients admitted in December to NYU; this patient

population is very small compared to the size and typical capacity of NYU.

For California, we exclude all patients going to Kaiser hospitals, as Kaiser is a vertically

integrated insurer and almost all patients with Kaiser insurance go to Kaiser hospitals, and

very few patients without Kaiser insurance go to Kaiser hospitals. This is in line with the

literature examining hospital choice in California including Capps et al. (2003). We also

exclude February though April 1994, as the I-10 Santa Monica freeway that goes through

Santa Monica only reopens in April.
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Figure 14 Damage Map in Los Angeles, CA

Note: Darker green areas indicate the earthquake intensity measured by the Modified Mercalli
Intensity (MMI); an MMI value of 7 reflects non-structural damage and a value of 8 moderate
structural damage. The areas that experienced the quake with greater intensity were shaded in a
darker color, with the MMI in the area ranging from 7-8.6. Any areas with an MMI of below 7
were not colored. The zip codes included in the service area are outlined in pink. Sources: USGS
Shakemap, OSHPD Discharge Data
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