
The Micro Elasticity of Substitution and Non-Neutral

Technology

⇤

Devesh Raval

Federal Trade Commission

devesh.raval@gmail.com

July 2, 2018

Abstract

This article provides evidence on the micro capital-labor elasticity of substitution
and the bias of technology. Using data on US manufacturing plants, I find several
facts inconsistent with a Cobb-Douglas production function, including large, persistent
variation in capital shares. I then estimate the elasticity using variation in local wages,
and several instruments for them, for identification. Estimates of the substitution
elasticity using all plants range between 0.3 and 0.5, with similar estimates across
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industries. I use these elasticity estimates to measure labor augmenting productivity,
and find that labor augmenting productivity is highly persistent, and correlated with
exports, size and growth.
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The elasticity of substitution between capital and labor is central for several policy

questions in economics. It determines how firms’ usage of labor and capital respond to

policy changes that a↵ect factor prices, such as investment subsidies (Hall and Jorgenson

(1967)), tari↵s on capital goods (Cai et al. (2015)), changes in trade barriers (Dornbusch

et al. (1980)), minimum wages (Aaronson and French (2007)), and firing costs (Petrin and

Sivadasan (2013)). The elasticity is also important to understand both some of the reasons

why firms innovate (Acemoglu (2010)), as well as how technological change a↵ects relative

factor intensities, either through non-neutral productivity (Hicks (1932), Sato (1975)) or

investment specific technical change (Greenwood et al. (1997)).

Most of the recent empirical literature on production function estimation using micro data

(Olley and Pakes, 1996; Levinsohn and Petrin, 2003) sets the elasticity of substitution to

one by estimating Cobb-Douglas production functions. Beyond setting the elasticity to one,

the Cobb-Douglas production function implies that all productivity di↵erences are neutral,

and so productivity improvements a↵ect all factors proportionately. This assumption on

productivity thus excludes automation technologies that both improve productivity and

decrease the amount of labor used in production. It means that productivity has no e↵ect

on factor shares.

In this article, I first develop a set of stylized facts to evaluate the credibility of the Cobb-

Douglas assumption at the industry level using US micro data on manufacturing plants.

Plants with a Cobb-Douglas production function should have a constant capital share. How-
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ever, plants within the same industry exhibit substantial variation in capital shares that are

persistent over time. Second, at least for the largest plants, capital shares are correlated

with plant revenue. Finally, capital shares fall when the average wage in a locality rises.

Given these facts, I estimate the elasticity of substitution between capital and labor that

a manufacturing plant faces. Cost minimization implies that the elasticity of substitution

measures how the ratio of factor costs responds to changes in factor prices. I identify the

elasticity using this relationship; no assumptions on demand or information about output

quality or prices are needed. For factor price variation, I use cross-sectional di↵erences in

wages across US localities.1 Because local wage di↵erences are highly persistent over time,

this approach should identify the average e↵ect of a long run change in factor prices on plant

factor shares.

The main identifying assumption I make is that location specific wages are uncorrelated

with di↵erences in labor augmenting productivity and rental prices across plants. This

assumption might be violated if more productive areas have higher wages, or if the price of

capital varies across locations due to locally built capital or firm specific interest rates. I

address the concern of endogenous wages by instrumenting for the local wage using three

sets of instruments. The first set of instruments are cross-sectional di↵erences in amenities

from Albouy et al. (2016); locations with greater amenities should have lower wages (Rosen,

1An earlier literature used cross-sectional di↵erences in wages across countries or US localities to estimate
aggregate or industry elasticities. See, for example, Arrow et al. (1961), Minasian (1961), Solow (1964), Lucas
(1969), Dhrymes and Zarembka (1970), and Zarembka and Chernico↵ (1971).
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1979; Roback, 1982). I also use two sets of instruments for labor market conditions based

on the interaction of local industry shares and nationwide shocks due to Bartik (1991) and

Beaudry et al. (2012).

Using OLS regressions, I estimate a plant-level elasticity of substitution to be between

0.3 to 0.5 using all manufacturing plants. When I allow the elasticity to vary across two

digit industries, estimates range between 0.15 and 0.75 for most industries. Using each of

the three sets of instruments, or all instruments together, leads to similar estimates of the

elasticity.

These estimates are robust to several potential concerns. To address the concern of corre-

lation between rental prices and wages, I estimate the elasticity between labor and equipment

capital, because buildings likely to have much more local construction than equipment cap-

ital. I also estimate specifications with firm fixed e↵ects to control for di↵erences in rental

prices or productivity across firms. To control for industry clustering, I separately examine

a set of narrowly defined industries which have plants located in almost all US localities. I

find broadly similar estimates to my baseline specification in these robustness checks, except

for slightly higher estimates of the elasticity after including firm fixed e↵ects.

I then apply my estimates of the micro elasticity of substitution to identify labor augment-

ing productivity. I identify labor augmenting productivity without placing any assumptions

on demand. Instead, cost minimization allows me to identify labor augmenting productiv-

ity using expenditures of each factor; I construct two productivity measures, the first using
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capital and labor, and the second using materials and labor.

Using these measures, I revisit some of the stylized facts of the productivity literature

looking at labor augmenting productivity. In order to account for measurement errors in

productivity, I employ a repeated measures IV strategy, instrumenting for one measure of

productivity using the other measure. I find that a plant with a one standard deviation in-

crease in labor augmenting productivity could produce 40 to 50 percent more output. Labor

augmenting productivity is quite persistent over time and correlated with revenue, exports,

and growth. These findings suggest that labor augmenting productivity is an important

dimension of firm di↵erences in productivity; productivity di↵erences a↵ect factor shares.

Misallocation frictions provide an alternate explanation for di↵erences in capital shares

across plants. For example, Hsieh and Klenow (2009) identifies misallocation frictions – out-

put and capital taxes – from factor cost and revenue shares; in their framework, di↵erences in

capital shares across firms are due to capital taxes. Midrigan and Xu (2014) and Asker et al.

(2014) develop models for misallocation frictions due to financing frictions and adjustment

costs, respectively. These alternative explanations can be distinguished in multiple ways.

First, persistent di↵erences in labor augmenting productivity would generate long run di↵er-

ences in capital shares across plants, whereas financing frictions or adjustment costs would

have more short run e↵ects.2 Second, auxiliary data on either a source of misallocation

frictions, such as a firm’s weighted average cost of capital, or on signals of labor augmenting

2For example, Midrigan and Xu (2014) show that, in the long run, firms overcome collateral constraints
in financing by funding capital through internal saving.
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productivity, such as adoption of automation technology (Acemoglu and Restrepo, 2017) or

management practices (Bloom and Van Reenen, 2007), would be helpful to tell apart the

two explanations.

This article is related to the empirical literature on the capital-labor elasticity, which

has focused on elasticities at the industry or country level of aggregation. We know from

Houthakker (1955) that elasticities can be di↵erent at di↵erent levels of aggregation; Ober-

field and Raval (2014) show why the aggregate elasticity should be larger than the micro

elasticity for the US. Three other articles estimate the long run micro elasticity using di↵er-

ent sources of identifying factor price variation. Chirinko et al. (2011) use the e↵ects of long

run movements in the user cost of capital on US public firms in order to identify the elastic-

ity. Their estimate is close to mine at 0.40. Using US plant level data on equipment capital

and a cointegrating regression, Caballero et al. (1995) find estimates ranging from 0.00 to

2.00 across di↵erent manufacturing industries, with an average of about 1. Doraszelski and

Jaumendreu (2018) use panel variation in the ratio between labor and materials prices in a

structural model in which the elasticity of substitution is equal between capital, labor, and

materials, and find estimates ranging between 0.45 and 0.65. Despite using di↵erent factor

price variation and data, my estimate is thus very similar to two of these articles.

This article is also related to the literature on production function estimation and produc-

tivity; most of the literature since Olley and Pakes (1996) has focused on neutral technology

and the Cobb-Douglas functional form. Like my article, three recent articles examine dif-
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ferences in production technology, either due to more general production functions, endoge-

nous technology, or non-neutral technology. Gandhi et al. (2017b) develop a methodology

to estimate many production functions by using the revenue share equations, provided that

productivity di↵erences are neutral. Doraszelski and Jaumendreu (2013) build a model that

generalizes the knowledge capital model by allowing R&D to a↵ect future plant productivity.

Doraszelski and Jaumendreu (2018) is the article closest to mine; they extend their previous

model to include non-neutral productivity, and find that labor augmenting technical change

is required to explain productivity growth for Spanish manufacturing firms.

The article proceeds as follows. Section 1 develops a set of stylized facts inconsistent

with a Cobb-Douglas production function. Section 2 builds a model of the firm’s production

problem. Section 3 discusses my estimates of the elasticity. Section 4 revisits stylized facts

on productivity using measures of labor augmenting productivity. Section 5 concludes. The

Web Appendix contains data notes and additional robustness checks.

1 Stylized Facts

Economists estimating production functions on micro data have typically assumed a Cobb-

Douglas production function at the industry level (Olley and Pakes, 1996; Levinsohn and

Petrin, 2003). One strong implication of this assumption is that technological di↵erences

are neutral, so factor shares should not vary with productivity. In addition, the elasticity of

substitution between factors is one under the Cobb-Douglas production function, so factor
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shares should not vary due to factor price di↵erences either. On the other hand, non-neutral

productivity di↵erences, and factor prices given a non-unitary elasticity, would a↵ect plant

factor shares. In this section, I develop a set of stylized facts on the dispersion, persistence,

and correlation with size of the plant ratio of capital costs to labor costs, or factor cost ratio,

inconsistent with a Cobb-Douglas production function. These facts then motivate a CES

production function with non-neutral technology.

Data on Factor Costs

For plant factor costs, I use the 1987 through 2007 US Censuses of Manufactures, which are

censuses of all US manufacturing plants taken every five years. Following common practice

in the literature, I remove Administrative Record plants, which are typically less than five

employees and lack data on capital or output. A typical Census sample has more than

180,000 plants and considerable variation across plant age, location, and industry, which I

use to control for confounding factors in my empirical specifications.3

I measure labor costs as the total salaries and wages for the plant. I measure capital

using a perpetual inventory measure of capital developed by the Census. Capital costs are

these capital stocks multiplied by rental rates based upon an external real rate of return as

in Harper et al. (1989).4 For robustness checks, I use the subsample of the Census included

3I drop manufacturing plants with missing or outlier data from my main estimates, although my results
are not sensitive to these outlier corrections. I also exclude Alaska and Hawaii as amenity instruments are
not available for these states. I detail these procedures in the Web Appendix.

4Because both the capital deflator and rental rate are fixed within industry for a given year, however,
these are often captured in industry fixed e↵ects. These measures of capital costs do not include industry
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Figure 1 Capital Share Density for Ready Mixed Concrete in 1987
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in the Annual Survey of Manufactures (ASM), which which tracks about 50,000 plants over

five year panel rotations. The ASM plants also have information on machinery rents and

non-wage labor benefits.

Persistent Within Industry Variation

I first document substantial variation in capital shares across plants within the same industry.

Figure 1 depicts the smoothed density for the capital share of the ready mixed concrete

industry in 1987. The mode of the capital share distribution for ready mixed concrete is

slightly above 0.2. However, many plants have capital shares below 0.1 or above 0.3, and a

long tail of plants have even higher capital shares.

This within industry dispersion in plant capital shares exists across manufacturing in-

dustries. I measure the magnitude of this dispersion by the 75/25 and 90/10 ratios of the

rental payments, except for ASM samples where I also include machinery rents.
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capital share distribution across plants for a given industry. I calculate these ratios for all

SIC 4 digit industries, and report the value of both ratios for the median, 25th percentile,

and 75th percentile industry for each ratio, where each percentile is defined relative to the

distribution of the given ratio across industries. Table 1 contains these results.

For the median industry in 1987, the capital share for the 75th percentile plant is almost

double that of the 25th percentile plant; the 90th percentile plant has a capital share almost

four times that of the 10th percentile plant. Moreover, the 75/25 ratio and 90/10 ratios

of the capital share vary slightly between the 25th percentile industry and 75th percentile

industry. For example, the 75/25 ratio for the capital share is 1.6 for the 25th percentile

industry, 1.7 for the median industry, and 2.0 for the 75th percentile industry.

This variation is similar for the factor cost ratio, which is the ratio of the capital share

to the labor share. From now on, I report statistics for the factor cost ratio because the

factor cost ratio better maps to the theory in Section 2 and my identification strategy for

the elasticity of substitution in Section 3.

Within industry di↵erences in factor cost ratios are persistent across time. I examine

persistence in order to demonstrate that factors that cause temporary variation in capital

shares, including idiosyncratic measurement errors and factor adjustment costs, cannot ex-

plain the degree of dispersion in plant factor shares.5 Table II contains estimates of the 10

year autocorrelation coe�cient for the factor cost ratio after controlling for industry fixed ef-

5Because factor adjustment costs would lead to temporary persistence, the level of persistence observed
is not consistent with standard models of adjustment costs.
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Table I Dispersion in the Capital Share and Factor Cost Ratio in 1987

Industry Percentile
Variable Statistic Median 25th 75th
Capital Share 75/25 Ratio 1.7 1.6 2.0

90/10 Ratio 3.6 2.8 4.4
Factor Cost Ratio 75/25 Ratio 2.1 2.0 2.5

90/10 Ratio 5.7 4.8 6.9

Note: The table contains the 75/25 ratio and 90/10 ratio of each variable for the median industry,
25th percentile industry, and 75th percentile industry in the 1987 Census, where each percentile is
defined relative to the distribution of the given ratio across 4 digit SIC industries. The capital share
is the capital share of capital and labor costs, and the factor cost ratio is the ratio of the capital
share to the labor share.

fects. The factor cost ratio is substantially autocorrelated over time with a coe�cient of 0.37

over ten years in 1997, 0.36 in 2002, and 0.26 in 2007. The implied one year autocorrelation

coe�cients given an AR(1) model of persistence range from 0.87 to 0.90.6 I also examine

the same 10 year autocorrelation using value added weights to measure the autocorrelation

of the largest manufacturing plants. The factor cost ratio is even more persistent for the

largest manufacturing plants, with a ten year correlation of 0.51 in 1997, 0.47 in 2002, and

0.41 in 2007 and implied AR(1) one year autocorrelations between 0.91 and 0.93.

The factor cost ratio has the same order of magnitude of persistence as revenue TFP,

which is well known to be highly persistent (Bartlesman and Doms (2000)). If productivity

di↵erences are neutral, as the Cobb-Douglas production function implies, then persistent

productivity di↵erences cannot explain persistent di↵erences in factor shares. On the other

hand, persistent non-neutral productivity di↵erences would explain persistent di↵erences in

TFP and factor shares.
6Under an AR(1) model the one year coe�cient is the ten year coe�cient to the power 1

10 .
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Table II Persistence in Factor Cost Ratio
Ten Year Persistence

1987-1997 0.37 (0.004) 0.51 (0.013)
1992-2002 0.36 (0.004) 0.47 (0.013)
1997-2007 0.26 (0.003) 0.41 (0.024)
Weights No Value Added

Note: All regressions control for four digit SIC or 6 digit NAICS industry.

Correlation with Size

I next examine whether large manufacturing plants have higher capital shares than the norm

for their industry. I do so because, given the neutral productivity di↵erences implied by a

Cobb-Douglas production function, high productivity plants would be larger than low pro-

ductivity plants, but would have the same capital shares. On the other hand, if productivity

di↵erences di↵erentially a↵ected factor shares, large plants would also have di↵erent average

factor shares.

Figure 1 displays the nonparametric relationship between the plant factor cost ratio and

value added for 1987, in the left figure, and 2002, in the right figure. Each variable is

calculated as a log deviation from its industry mean in order to control for industry e↵ects.

In both 1987 and 2002, the factor cost ratio increases with value added for plants whose

value added is above the industry mean, with an increase of about 35 to 50 percent between

plants with value added at the industry mean and the largest plants in the industry.

For plants with value added below the industry mean, the factor cost ratio falls in 1987

and rises in 2002. One explanation for the dip in 1987 is mismeasurement of capital utilization
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(a) 1987 (b) 2002

Figure 2 Factor Cost Ratio by Value Added

Note: Each graph depicts a local polynomial regression of the log factor cost ratio on log plant
value added, after adjusting all variables for industry e↵ects by subtracting the log industry mean.

for small plants. Accounting for utilization would lower the factor cost ratio for low output

firms and raise the factor cost ratio for high output firms.

I then examine whether the relationships with plant value added hold through regressions

with controls for plant level age through a set of dummy variables, plant single establishment

status, and the state in which the plant is located. Table III reports the coe�cient on log

value added for regressions with this extensive set of controls. I examine both the full Census

sample as well as the ASM subsample, as for the ASM sample I can include machinery rents

and non-wage benefits in factor costs.7

The relationship between the factor cost ratio and value added ranges from a 3 percent

decrease to a 2 percent increase across years with a 100 percent increase in value added using

7All specifications using the ASM sample include the ASM sampling weights. When weighting by value
added, I multiply value added by the ASM weight.
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the full Census sample. It decreases between 2 to 5 percent with a 100 percent increase in

value added using the ASM subsample, primarily because of the inclusion of machinery rents.

Including machinery rents reduces the coe�cient on value added because more small plants

rent their machinery; these small plants may be more subject to the unobserved capital

utilization problem discussed earlier.

However, the correlation between the factor cost ratio and value added is always positive

and of larger magnitude for the largest plants in manufacturing. I examine the largest plants

by weighting for value added, which puts much greater weight on the largest plants in these

regressions. After weighting for value added, the factor cost ratio increases between 5 and 9

percent across years with a 100 percent increase in value added using the full Census sample,

or 6 to 11 percent using the ASM subsample. Thus, even though the relationship between

the factor cost ratio and value added is ambiguous and possibly negative for all plants, it

remains positive and sizeable when looking at the largest plants.8 If productivity di↵erences

were neutral, productivity cannot explain these patterns.

2 Theory

Given the evidence of di↵erences in the factor cost ratio across plants in the previous section,

I assume a constant elasticity of substitution (CES) production function. The production

8In Appendix B.1, in order to show how the size relationship varies by the size of the plant, I run
regressions weighting around a given value of log value added, and continue to find a substantial positive
correlation between value added and the factor cost ratio for large plants.
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Table III Correlations of Factor Cost Ratio with Value Added
CMF CMF ASM ASM

1987 0.02 (0.002) 0.06 (0.005) -0.03 (0.009) 0.06 (0.006)
1992 0.02 (0.001) 0.09 (0.006) -0.05 (0.006) 0.08 (0.007)
1997 -0.03 (0.001) 0.07 (0.006) -0.02 (0.006) 0.11 (0.01)
2002 0.004 (0.002) 0.05 (0.009) -0.04 (0.006) 0.08 (0.01)
2007 -0.03 (0.002) 0.06 (0.009) -0.02 (0.005) 0.10 (0.009)
Weights No Value Added ASM Weight ASM Weight * Value Added

Note: Each cell contains the coe�cient from a regression with log value added as the independent
variable and the factor cost ratio as the dependent variable, and includes controls for dummy vari-
ables for age and state, single establishment status and four digit SIC or six digit NAICS industry.
Reported standard errors are robust to arbitrary degrees of heteroskedasticity.

function for the plant is then:

Y = A(↵k(K)
��1
� + (1� ↵k � ↵m)(BL)

��1
� + ↵m(M)

��1
� )

�
��1 (1)

The elasticity of substitution is �. Plant level technology has two components. The first

component, A, is neutral productivity, and the second component, B, is labor augmenting

productivity. An increase in labor augmenting productivity B is equivalent to having more

labor. The physical output produced by the plant is Y . The distribution parameters ↵k and

↵m govern how much capital and materials contribute to output relative to labor.9 Returns

to scale are constant.

A cost minimizing plant sets marginal products equal to factor prices. Assuming com-

9When � is one, we have the familiar Cobb Douglas production function; all productivity is neutral, ↵k is
the elasticity of output with respect to capital, and ↵m is the elasticity of output with respect to materials.
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petitive factor markets, this implies that:

Y

L
= (

w

C
)�(1� ↵k � ↵m)

��(AB)1�� (2)

Y

K
= (

r

C
)�(↵k)

��A1�� (3)

where C is the marginal cost.10 Thus, the average product of labor depends on the ratio of

the wage to marginal cost through the elasticity of substitution, as well as on both neutral

productivity A and labor augmenting productivity B. By dividing the two equations above

and rearranging, the plant capital cost to labor cost ratio, or factor cost ratio, is:

rK

wL
= (B)1��(

r

w
)1��(

↵k

1� ↵k � ↵m
)� (4)

log
rK

wL
= (1� �) log(B) + (1� �) log(

r

w
) + � log(

↵k

1� ↵k � ↵m
) (5)

I use the above equation to estimate the elasticity of substitution �. Wage increases reduce

the factor cost ratio when � is less than one, and increase the factor cost ratio when � is

greater than one.

The elasticity of substitution also determines how productivity a↵ects the plant factor

cost ratio; the elasticity of the factor cost ratio to changes in labor augmenting productivity B

is 1��. The intuition is the following. Because the increase in labor augmenting productivity

10The marginal cost is the Lagrange multiplier on the production function in the cost minimization prob-
lem.
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B is akin to more labor, the plant will increase K to exactly match the increase in e�cient

labor BL. However, the increase in B also reduces the cost of an e�cient unit of labor,

which is w
B . The plant will then substitute towards relatively cheaper labor, with the ratio of

capital to e�cient labor K
BL changing by �� given the change in the ratio of prices r/(w/B).

Hence K/L increases 1 by a direct e↵ect and decreases � by a substitution e↵ect. When

capital and labor are gross complements, so � is less than one, the direct e↵ect is stronger

than the substitution e↵ect.11 Neutral productivity A has no e↵ect on the factor cost ratio.

3 Elasticity of Substitution

I identify the elasticity of substitution by using the log-linear relationship between the plant

factor cost ratio and plant factor prices from equation (4):

fi = �0 + �1 log(wl(i)) + �n(i) + �Xi + "i. (6)

In this equation, fi is the log factor cost ratio, wl(i) is the local wage, �n(i) are controls for

the 4 digit SIC or 6 digit NAICS industry of the plant, and Xi are additional controls in the

form of age fixed e↵ects and an indicator for the multiunit status of the plant. The industry

fixed e↵ects control for industry level di↵erences in rental rates as well as in the capital and

11I use the same definition of gross complements as Acemoglu (2002), who defines two inputs as gross
complements if the demand for one input falls in response to another input’s price rising holding its own
price and the quantity of the other input fixed.

17



materials distribution parameters ↵k and ↵m.

The main coe�cient of interest is �1, which identifies the elasticity of substitution through

the wage that the plant faces; the elasticity � is �1 + 1. I use cross-sectional variation in

the local wage for identification. The local wage is the price of an e�ciency unit of labor:

plants with higher plant level wages in the same location are assumed to have higher skilled

workers. By using the local wage instead of the plant wage, I avoid biases from plant level

skill di↵erences.12 In addition, I avoid division bias, in which the same variable is present on

both sides of the regression specification and measured with error. The wage data on the left

hand side of equation (6) are total labor costs in the Census data for the plant, whereas the

wage on the right hand side is an average local wage from either Census surveys of workers

or information on all establishments, not just manufacturing plants, in the locality.

The identification strategy based on equation (6) still identifies the capital-labor elasticity

when a number of the assumptions in Section 2 are relaxed. Although Section 2 examines

a production function with the same elasticity of substitution across capital, labor, and

materials, my identification approach for the capital-labor elasticity requires separability

between materials and a CES capital-labor aggregate. Returns to scale a↵ect all factor costs

to the same degree and so do not a↵ect estimates of the elasticity.

Section 2 also assumes that the static cost minimization conditions on inputs hold in

each period, which would be violated if plants face adjustment costs together with demand

12In Appendix B.2, I provide a data generating process under which the local wage identifies the elasticity,
as well as alternative estimates using the plant level wage.
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or productivity shocks. Adjustment costs and a process of demand and productivity shocks

together generate an ergodic cross-sectional distribution for the factor cost ratio across all

plants at a given location. At any given point in time, a plant will have factor shares within

this cross-sectional distribution, and will move within the distribution over time. As I show

in the next section, the local wage di↵erences I use for identification are highly persistent

across time. Thus, my estimate of the elasticity of substitution measures how the distribution

of factor cost ratios in a location responds to a long run change in factor prices; in that sense,

this article estimates a long run elasticity. This elasticity would be relevant to assess the

e↵ects on plant factor shares of any policy that causes long run changes to factor prices.

For consistent estimates, the local wage must be orthogonal to the error term "i, which will

include plant-level di↵erences in the rental rate for capital and labor augmenting productivity.

I first show estimates using OLS regressions in Section 3. In Section 3, I discuss estimates

using three sets of instruments for the local wage, and in Section 3, I examine further

robustness checks to the exogeneity assumption.

Local Wage Data

I use the 1990 Commuting Zone as my definition of local labor market. Commuting zones

are clusters of US counties designed to have high commuting ties within cluster and low

commuting ties across cluster. Thus, workers in the same commuting zones likely face

the same labor market conditions and same wages. In the lower 48 states, there are 722
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commuting zones.

I measure local area wages through two independent data sources. My first source of

wages is the Census five percent samples of Americans, and American Community Surveys

(ACS), available from Ruggles et al. (2010). These surveys collect information on a wide

range of attributes for a large sample of workers. I calculate the individual wage as wage

and salary income divided by the total hours worked for private sector workers.

I control for di↵erences in worker quality across areas by measuring the local wage as the

average residual log wage after controlling for education, experience, industry, occupation,

gender, and race of workers.13 Wage di↵erences across locations are persistent; the correlation

in the log wage between 1990 and 2000 across all commuting zones is 0.93.

My second source of local wages is the Longitudinal Business Database (LBD), which

contains yearly employment and payroll data for all US establishments. I define the wage as

payroll divided by employment, and construct average log wages for each commuting zone

in the United States after eliminating industry wage premia. LBD wages allow me to match

wages to the same year as plant production data, but do not permit adjustment for worker

quality di↵erences.

13Appendix A.2 contains the details of these procedures. Since the Population Census is conducted every
ten years, I match the Census of Manufactures to the closest Economic Census.
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Estimates

I first examine the relationship between the factor cost ratio and local wage nonparametri-

cally. Figure 3 depicts how the industry demeaned factor cost ratio varies with the worker

based local wage in 1987. The factor cost ratio falls by 20 percent as the wage increases by

about 50 percent, indicating an elasticity of substitution slightly less than one half.14

Figure 3 Factor Cost Ratio by Local Wage for 1987

Note: The graph depicts the local linear regression of the log deviation of the plant factor cost ratio
from the industry mean against the log commuting zone wage adjusted for worker characteristics.

The relationship between the logged values of the factor cost ratio and local area wage is

approximately linear, as a constant elasticity of substitution would imply. Table IV contains

estimates of the elasticity of substitution across all manufacturing industries using equa-

tion (6) and both sources of wages. I cluster standard errors at the commuting zone level,

which adjusts standard errors for the possibility of correlated shocks within local areas. For

14 To my knowledge, I am the first to examine the relationship between plant factor shares and the local
wage.
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example, all plants in Detroit can be a↵ected by the same shock.15

Table IV OLS Estimates of Plant Capital-Labor Substitution Elasticity

Wage Source Worker Data Establishment Data N
1987 0.44 (0.04) 0.54 (0.03) ⇡ 185,000
1992 0.47 (0.03) 0.52 (0.03) ⇡ 201,000
1997 0.29 (0.05) 0.48 (0.04) ⇡ 209,000
2002 0.31 (0.06) 0.48 (0.05) ⇡ 186,000
2007 0.45 (0.04) 0.58 (0.03) ⇡ 184,000

Note: All regressions are of the log factor cost ratio on the log local area wage, with age fixed
e↵ects, a multi-unit status indicator, and 4 digit SIC or 6 digit NAICS industry fixed e↵ects as
controls. Standard errors are clustered at the commuting zone level.

My estimates of the elasticity of substitution from the regressions using wages from

worker data range from 0.29 to 0.47 across years. Using the wages from establishment data,

my estimates of the elasticity of substitution range from 0.48 to 0.58. These estimates are

precise.

Estimates that use wages from worker data are below the estimates that use wages from

establishment data. The main reason for this di↵erence is that the worker based wages

adjust for worker quality di↵erences. If I do not adjust the wages from worker data for

worker quality di↵erences, I estimate higher elasticities, similar to the estimates above using

wages from establishment data.

I further estimate the elasticity of substitution at the SIC two digit, or NAICS 3 digit,

level to examine how the elasticity varies by industry. I find estimates similar to those for the

entire manufacturing sector. Figure 4 displays estimates and 95 percent confidence intervals

15Although there are 722 commuting zones in the lower 48 United States, the number of clusters will be
slightly lower and vary from year to year as a few small commuting zones do not have manufacturing plants.
Unfortunately, I cannot report the exact number of clusters per year for Census disclosure reasons.
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of the elasticity of substitution for each two digit SIC industry for 1987 using worker based

wages.16 Most of the estimates are concentrated between 0.15 and 0.75; in 1987, 18 out

of the 19 estimates are in this band.17 The elasticity of substitution is below one for all

industries, and I can reject that the elasticity of substitution is one for 17 of 19 industries.

In Table A6 through Table A11, I report the full set of estimates across all years, using both

worker and establishment based wages.

Exogenous Wage Variation

One concern with the OLS estimates is that productivity di↵erences a↵ect local wages.

If highly productive areas have high wages and high labor augmenting productivity, my

estimates of the elasticity of substitution would be biased upwards. I examine the salience

of this bias through three di↵erent sets of instrumental variables for the local wage.

The first set of instruments are measures of local amenities from climate and geography

that a↵ect labor supply. A model with free mobility of workers and firms and compensating

wage di↵erentials implies that locations with greater amenity value should have lower wages

(Rosen, 1979; Roback, 1982). The amenities I use were developed by Albouy et al. (2016)

and include measures of the slope, elevation, relative humidity, average precipitation, average

sunlight, the number of heating degree days and cooling degree days, and temperature day

16I include the tobacco industry (SIC 21) as part of Food Products (SIC 20) from the table because it is
much smaller than the other two digit industries.

17Using worker based wages, 18 out of 19 estimates in 1992, 14 out of 19 in 1997 (SIC), 17 out of 21 in
1997 (NAICS), 14 out of 21 in 2002, and 16 out of 21 in 2007 are in this band.
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Figure 4 Elasticity of Substitution by Industry for 1987

Note: The figure plots estimates of the elasticity of substitution by two digit SIC industry, as well
as 95 percent confidence intervals. Estimates are for 1987 using worker based wages.
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bins for each local area. I exclude amenities based on distance to the coast or lakes as these

may also a↵ect import and export possibilities, and thus the productivity of the plant and

the competition it faces.18

The second instrument varies labor market conditions through how national level industry

shocks a↵ect locations with di↵erent initial industries. As in Bartik (1991), I define this

instrument as the predicted local employment growth from the interaction between initial

local area employment shares of industries and the national employment growth rate of these

industries. I restrict the instrument to non-manufacturing industries to avoid any correlation

between plant productivity shocks and national level industry demand shocks.19

I also use a second set of instruments for labor market conditions from Beaudry et al.

(2012), which I call the BGS instruments. Beaudry et al. (2012) construct a search and

bargaining theory of employment in which the industrial composition of the city – its shares

of each industry multiplied by each industry’s wage premium – a↵ects the city-level wage

for an industry through workers’ outside options. Although the industrial composition itself

is endogenous to productivity shocks, Beaudry et al. (2012) develop two instruments for

it: the interaction of predicted changes in industry employment shares and industry initial

wage premia, and the interaction of national changes in industry wage premia and predicted

18The amenities in Albouy et al. (2016) were collected at the PUMA level. I aggregate them to the
commuting zone level by taking an average across PUMAs in the same commuting zone, weighting PUMAs
by their population in the commuting zone.

19Because industry definitions change twice in the sample – from 1972 SIC to 1987 SIC in 1987, and then
from SIC to NAICS in 1997, I have to alter years slightly, or use the five year instrument and its lag instead
of the ten year instrument, depending upon the Census year. Details are in Appendix A.3.
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future industry employment shares.

Table V contains estimates of the elasticity of substitution using these instruments, as well

as the F-statistic associated with each instrument. The first two columns contain estimates

for the amenity instruments using wages from worker and establishment data, respectively.

For the Bartik and BGS instruments, I use wages from establishment data for the same

Census year to match the instrument timing. Although these wages do not control for

di↵erences in individual worker characteristics, the instruments should be orthogonal to

the measurement error in wages. The third and fourth columns use the Bartik and BGS

(Beaudry et al. (2012)) instruments, and the last column includes the amenity, Bartik, and

BGS instruments together in one specification. The estimates of the elasticity of substitution

are similar in magnitude to the OLS estimates in Table IV, ranging roughly between 0.3 and

0.6. I also report F-statistics to examine the suitability of the instruments. The instruments

are also typically strong, with most of the F-statistics above 10 and the lowest F-statistic at

7.

In Appendix B.3, I also conduct ex-post instrument specification tests, both through

running heteroskedasticity robust Hausman tests and by regressing the residual from an

instrumented regression on excluded instruments. I reject exogeneity of the amenity instru-

ments in all years, and exogeneity of the Bartik instrument and BGS instruments in two out

of five years each. However, regressions of the residual from an instrumented regression on

excluded instruments lead me to conclude that departures from plausible exogeneity of the
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instruments are small, and concentrated in a few of the amenity instruments. Small di↵er-

ences in elasticities estimated by varying the set of instruments are consistent with small

departures from plausible exogeneity.

Table V IV Estimates of Plant Capital-Labor Substitution Elasticity

Year Estimate Amenities Bartik BGS All
Wage Source Worker Establish Establish Establish Establish
1987 Elasticity 0.45 (0.07) 0.48 (0.06) 0.52 (0.04) 0.45 (0.09) 0.51 (0.04)

F-Statistic 15 9 257 8 99
1992 Elasticity 0.57 (0.06) 0.55 (0.05) 0.45 (0.04) 0.48 (0.04) 0.50 (0.03)

F-Statistic 15 8 46 58 59
1997 Elasticity 0.28 (0.09) 0.40 (0.07) 0.41 (0.11) 0.36 (0.08) 0.41 (0.05)

F-Statistic 10 8 7 73 39
2002 Elasticity 0.33 (0.13) 0.42 (0.11) 0.31 (0.10) 0.37 (0.06) 0.42 (0.06)

F-Statistic 10 11 67 35 46
2007 Elasticity 0.49 (0.09) 0.53 (0.07) 0.51 (0.05) 0.56 (0.05) 0.54 (0.04)

F-Statistic 16 14 48 13 34

Note: Standard errors are clustered at the commuting zone level. All regressions include industry
dummies, age fixed e↵ects, and a multiunit status indicator. Instruments are as defined in the text.
Wages are establishment based except for column 2, which uses worker based wages.

Robustness

My identification strategy requires that the local area wage, or instruments for the local area

wage, are orthogonal to di↵erences in the rental rate of capital and plant level productivity

across areas. I now discuss a number of robustness checks that test these assumptions.
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Rental Rate of Capital

Any systematic correlation between the rental rate of capital and local wage would bias my

estimates. These might be correlated if the capital of the plant was produced in the same

locality as the plant, so local labor and materials were factors in its production. Because

locally constructed capital is more likely for buildings than equipment, I examine the elastic-

ity of substitution between labor and equipment capital alone for 1987 and 1992 to control

for rental rate di↵erences across local areas stemming from structures capital. The elastic-

ity between labor and equipment capital is 0.45 in 1987 and 0.47 in 1992 using the quality

adjusted worker wages, almost identical to the estimates using the full capital stock.

The cost of capital could also vary across firms because of di↵erences in lending rates

from banks in di↵erent locations, or from di↵erences in firm creditworthiness. I include firm

fixed e↵ects for plants that belong to multiunit firms to control for variation in the firm rental

rate of capital. These firm fixed e↵ects also control for firm level productivity di↵erences.

The third column in Table VI reports these estimates. The estimates of the elasticity of

substitution with firm fixed e↵ects are somewhat higher than my baseline estimates in these

specifications, ranging from 0.55 to 0.66 across years, about 0.2 higher than my baseline

results.

Including firm fixed e↵ects for multiunit plants is the only specification check with a

substantially di↵erent estimate of the elasticity of substitution. These results could imply
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that the plant’s cost of capital is negatively correlated with wages, so controlling for firm level

rental rates increases estimates of the elasticity of substitution. Another explanation for this

finding is that some multiunit firms may set a uniform wage policy across plants that they

own in di↵erent local areas, due perhaps to fairness norms. If firms are constrained to pay

similar wages across plants in di↵erent locations, then I would overestimate local di↵erences

in wages for multiunit firms after controlling for a firm e↵ect, which would attenuate the

estimate of 1� �, and so bias the estimate of � toward one.

Regulation

Regulations could also vary across local areas that a↵ect both plant productivity and rental

prices. For example, states vary in their regulations towards unions, such as right to work

laws, and some states provide investment tax subsidies. I control for any such state level

di↵erences by including state level fixed e↵ects in the fourth column of Table VI; the elasticity

of substitution for 1987 range from 0.3 to 0.5 and are similar to my baseline estimates.

Measurement Errors in Capital

Another concern when using data in capital is that measurement errors in capital bias esti-

mates of the elasticity. The factor cost ratio is the dependent variable, so any measurement

error in capital is part of "i in equation (6) and must be uncorrelated with the local wage,

or instruments for the local wage.
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I examine the salience of measurement error in three ways. First, I examine plants in

the Annual Survey of Manufactures. These plants generally have more accurate data, both

because they have participated in the plant surveys for multiple years and because they

have the investment history required to construct better perpetual inventory measures of

capital. The ASM plant samples also have data on the value of non monetary compensation

given to employees, such as health care or retirement benefits, which I use to better measure

payments to labor. The estimates using the ASM plants, in the fifth column of Table VI,

are consistent with, albeit slightly higher than my baseline estimates, and range from 0.37

to 0.67 across years.

Second, I replace the perpetual inventory measure of capital with a book value measure

of capital using data on book values of structures and equipment (total value of capital after

1992). These estimates are in the sixth column of Table VI and are slightly lower than the

baseline estimates, ranging from 0.22 to 0.42 across years. Third, for 2002 and 2007 I can

include both machinery rents and the value of non monetary compensation to my measure

of the factor cost ratio.20 I estimate an elasticity of 0.40 in 2002 and 0.49 in 2007 including

both rents and non-monetary compensation, within my baseline range of estimates.

20Unfortunately, in earlier years the Census reports total rents, and the building rents reported to the
Census include the value of land, which is excluded from Census information on investment and capital
stocks.
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Industry Clustering and Selection

I have assumed that plant level productivity is uncorrelated with the prevailing wage in

the area that the plant locates. However, firms in an industry often co-locate within a few

clusters; Detroit is synonymous with the automotive industry and Silicon Valley with the

computer industry. If plants with high labor augmenting productivity cluster in areas with

high wages, or agglomeration e↵ects increase the productivity of plants within a cluster,

the resulting correlation between productivity and the local wage would bias my estimates

upwards. Similarly, plants outside the industry cluster could serve a di↵erent segment of the

industry than plants within the cluster.

I assess the impact of selection by estimating the elasticity of substitution for a set of

ten large four digit SIC industries located in almost all US MSAs and states. Ready Mixed

Concrete is perhaps the best test case of these industries; because ready mixed concrete can-

not be shipped very far, every location must have concrete plants to supply the construction

sector.21 Elasticities for the unclustered industries are similar to my baseline estimates, with

average elasticities of 0.40 for 1987, 0.51 for 1992, and 0.38 for 1997 using the worker based

wages, or 0.50 for 1987, 0.57 for 1992, and 0.53 for 1997 using the establishment wages. In

Table A12 through Table A14, I report the full set of estimates.22

21For ready mixed concrete, I find an elasticity of substitution of 0.17 in 1987, 0.66 in 1992, and 0.11 in
1997 using the worker based wages, and 0.36 in 1987, 0.82 in 1992, and 0.34 in 1997 using the establishment
wages.

22The weights across industries are as in Oberfield and Raval (2014) and primarily depend upon overall
industry size.
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Table VI Robustness Checks for Plant Capital-Labor Substitution Elasticity

Baseline Equip Cap Firm FE State FE ASM Book Cap Rents
1987 0.44 (0.04) 0.45 (0.03) 0.57 (0.07) 0.39 (0.04) 0.40 (0.08) 0.42 (0.04)
1992 0.47 (0.03) 0.47 (0.03) 0.65 (0.06) 0.31 (0.03) 0.67 (0.07) 0.39 (0.03)
1997 0.29 (0.05) 0.66 (0.06) 0.32 (0.05) 0.42 (0.09) 0.27 (0.05)
2002 0.31 (0.06) 0.59 (0.06) 0.41 (0.07) 0.52 (0.09) 0.22 (0.07) 0.49 (0.05)
2007 0.45 (0.04) 0.55 (0.07) 0.48 (0.05) 0.37 (0.07) 0.39 (0.04) 0.40 (0.05)

Note: Standard errors are clustered at the commuting zone level. All regressions include industry
dummies, age fixed e↵ects, and a multiunit status indicator. All specifications use worker based
wages.

4 Labor Augmenting Productivity Di↵erences

Coupled with the structural model of production, my estimates of the elasticity of substi-

tution allow me to recover labor augmenting plant productivity. I do so to examine the

extent of labor augmenting productivity di↵erences across plants, as well as whether these

di↵erences are correlated over time and with plant decisions. If labor augmenting productiv-

ity di↵erences across firms are significant, productivity shocks will also alter factor shares.

Thus, understanding the bias of technology is important both to measure productivity, as

well as to predict how productivity changes a↵ect firms.

Cost minimization implies that labor augmenting productivity is a function of the factor

cost ratio and factor price ratio.23 Thus, one can obtain B using either the capital and labor

first order conditions, or the labor and materials first order conditions, as below:

23Rearrange equation (4) to obtain the first expression for B; the second expression has a similar derivation
from the labor and materials first order conditions.
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I then build two di↵erent measures for labor augmenting productivity B based on plant

expenditures on factors; the first measure, B̂K , uses the capital cost to labor cost ratio as

in equation (7). The second measure, B̂M , uses the materials cost to labor cost ratio as in

equation (8).

I then revisit some of the standard relationships between productivity and plant level

variables using these productivity measures by examining the persistence of productivity and

its correlation with size, exports, and growth. For labor augmenting productivity di↵erences

across plants to be important, labor augmenting productivity should exhibit some of the

same patterns as have been previously found for productivity in general.

To measure labor augmenting productivity, I set the elasticity of substitution � to the

IV estimate for the manufacturing sector in the given Census year using all three sets of

instruments. Each measure of productivity is a di↵erence relative to an industry mean, so

di↵erences in industry distribution parameters ↵k and ↵m are removed from productivity

measures. Because the wage w is based upon worker wages that control for observed skill

di↵erences, observed skill di↵erences are suppressed from productivity.
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Both measures are likely measured with error, however, because of either errors in the

measurement of capital (for B̂K) or in the materials price across plants (for B̂M).24 Thus,

when examining how labor augmenting productivity varies with other variables, I instrument

for B̂K with B̂M (Bound et al., 2001). This procedure relies on two additional assumptions

from the empirical approach for the capital-labor elasticity. First, errors in capital must be

uncorrelated with di↵erences in the materials price across plants and with the other variable

of interest. Second, the production function must have the same elasticity of substitution

between capital, labor, and materials. The intuition behind this IV strategy is that labor

augmenting productivity is likely to be high when both capital costs and materials costs are

large relative to labor costs.

Unlike my estimates of the elasticity of substitution, these results do depend upon my

assumption of a gross output, as opposed to a value added, production function. Although

recent work has found substantial di↵erences between gross output and value added pro-

ductivity estimates (Gandhi et al., 2017a), the CES production function assumed in equa-

tion (1) satisfies the functional separability between primary inputs and materials required

for a value added production function to correctly measure marginal productivities (Bruno,

1978).25 With a value added production function, I would only have one measure of la-

bor augmenting productivity (B̂K) and so could not undertake the multiple measures IV

24See Atalay (2014) for a discussion of di↵erences in materials prices across plants.
25Stronger assumptions, such as that materials are Leontief with capital and labor in gross output, are

required to correctly measure productivity growth. See Bruno (1978).
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approach undertaken in this section.

I first examine the distribution of labor augmenting productivity B. Since both of my

measures of B are measured with error, simply measuring the variance of each measure will

exaggerate the size of productivity di↵erences. Thus, I calculate the covariance of log B̂K and

log B̂M , which will measure the variance of B under the assumption that the measurement

error in capital and measurement error in materials prices are uncorrelated with each other

and with true productivity. The standard deviation of productivity ranges from 0.64 to 0.85

across Census years.

In order to better interpret the degree of di↵erences across plants, I also calculate the

variance of each measure of productivity multiplied by the labor share of total cost, which

provides the output elasticity for labor augmenting productivity di↵erences. The standard

deviation of this measure is between 0.36 and 0.44 across Census years, indicating that a plant

with a one standard deviation increase in labor augmenting productivity can produce about

40 to 50 percent more output. Although this variance implies a large e↵ect of productivity

on output, it is consistent with the literature on productivity dispersion in TFP. Bartelsman

et al. (2013) documents for US manufacturing plants that a plant with a one standard

deviation increase in TFP can produce 46 percent more output.
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Persistence

I then examine the degree of persistence in labor augmenting productivity, given that the

literature has found that productivity is fairly persistent over time. Table VII contains

estimates of the ten year autocorrelation of productivity between the 1987 to 1997, 1992 to

2002, and 1997 to 2007 Manufacturing Censuses. For each pair of Census years, I regress

log B̂K on its 10 year lag, instrumenting for the 10 year lag with the 10 year lag of log B̂M .

I control for industry fixed e↵ects, as well as age and multiunit status, in this and all other

regressions in this section; standard errors are robust.

Labor augmenting productivity has a 10 year autocorrelation of 0.28 for 1997 and 2002

and 0.40 in 2007 in the unweighted regressions. The autocorrelation is even higher in the

weighted regressions at 0.46 in 1997, 0.43 in 2002, and 0.70 in 2007. The implied one year

AR(1) coe�cients for labor augmenting productivity range between 0.88 to 0.96.26 Thus,

labor augmenting productivity is very persistent over time.

With greater persistence in labor augmenting productivity, capital share di↵erences will

be more persistent across firms. In addition, the marginal product of labor depends more

upon labor augmenting productivity than the marginal product of capital. Thus, if labor

augmenting productivity is more persistent than neutral productivity, the marginal product

of labor within a plant should vary less over time than the marginal product of capital, which

will a↵ect a plant’s investment decisions over time.

26Under an AR(1) model the one year coe�cient is the ten year coe�cient to the power 1
10 .
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Table VII Autocorrelation of Productivity

Ten Year Persistence
1987-1997 0.28 (0.01) 0.46 (0.04)
1992-2002 0.28 (0.02) 0.43 (0.05)
1997-2007 0.40 (0.02) 0.70 (0.07)
Weights No Value Added

Note: Each regression instruments for the ten year lag of labor augmenting productivity measure
B̂

K with the ten year lag of B̂M . All regressions contain four digit SIC or six digit NAICS industry
fixed e↵ects, as well as age and multiunit status controls. Standard errors are robust.

Exports

The trade literature has found that exporting plants are both more capital intense and more

productive (Bernard et al. (2007)). One explanation for both facts is that exporting plants

have higher labor augmenting productivity. To examine the correlations between exports

and productivity, I run regressions of logged exports on labor augmenting productivity for

exporting plants. Again, I instrument for log B̂K using log B̂M . Table VIII contains the

coe�cients on productivity.

Labor augmenting productivity is strongly correlated with exports, with an exporting

plant with twice as high productivity having between 84 and 157 percent higher exports

across years in the unweighted regressions. Although these correlations are lower in the re-

gressions weighting plants by value added, an exporting plant with twice as high productivity

still has between 27 and 121 percent higher exports. Thus, labor augmenting productivity

di↵erences would generate exporters that are more productive and more capital intensive.

37



Table VIII Correlations between Productivity and Exports

1987 0.84 (0.05) 0.27 (0.19)
1992 1.16 (0.05) 0.66 (0.13)
1997 1.49 (0.06) 0.89 (0.14)
2002 1.57 (0.07) 1.21 (0.33)
2007 1.19 (0.05) 0.49 (0.10)
Weights No Value Added

Note: The log of exports is the dependent variable and all plants without exports are excluded
from the estimates. Each regression instruments for labor augmenting productivity measure B̂

K

with B̂

M . All regressions contain four digit SIC or six digit NAICS industry fixed e↵ects, as well as
age and multiunit status controls. Standard errors are robust.

Correlation with Size

Previous work has found that higher TFP plants are larger. I now examine whether plants

with greater labor augmenting productivity are also larger by regressing log value added

on log B̂K , instrumenting for it using log B̂M . In Table IX, I find that labor augmenting

productivity is substantially correlated with plant value added. The first two columns ex-

amine the full Census, whereas the last two columns examine the ASM plants for which

I can include machinery rents and labor benefits in factor payments. A plant with twice

the labor augmenting productivity has between 27 to 57 percent higher value added in the

unweighted regressions across years and samples, and between 30 to 70 percent higher in

the weighted regressions. I do not find significant di↵erences between the Census and ASM

samples. Thus, plants with higher labor augmenting productivity are larger in size.
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Table IX Correlations between Productivity and Value Added

CMF CMF ASM ASM
1987 0.27 (0.01) 0.31 (0.05) 0.31 (0.04) 0.33 (0.05)
1992 0.28 (0.01) 0.45 (0.05) 0.56 (0.07) 0.48 (0.05)
1997 0.33 (0.01) 0.60 (0.07) 0.57 (0.05) 0.62 (0.07)
2002 0.41 (0.01) 0.70 (0.08) 0.56 (0.06) 0.69 (0.08)
2007 0.49 (0.01) 0.37 (0.05) 0.46 (0.04) 0.30 (0.05)
Weights No Value Added ASM Weight ASM Weight * Value Added

Note: Each regression instruments for labor augmenting productivity measure B̂

K with B̂

M .
All regressions contain four digit SIC or six digit NAICS industry fixed e↵ects, as well as age and
multiunit status controls. Standard errors are robust.

Growth

Finally, I examine whether plants with higher labor augmenting productivity have higher

growth rates over the next ten years. I define the growth rate in terms of value added,

and regress the log growth rate on labor augmenting productivity, instrumenting for log B̂K

using log B̂M . Table X contains these estimates looking at growth from 1987-1997, 1992-

2002, and 1997-2007. I find significantly higher growth rates for plants with higher labor

augmenting productivity; a plant with double the labor augmenting productivity has a 12

to 24 percent higher growth rate across years in the unweighted regressions, and a 8 to

13 percent higher growth rate in the weighted regressions. Thus, plants with higher labor

augmenting productivity tend to grow faster in size in future.
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Table X Correlations between Productivity and Growth in Value Added

Ten Year Growth Rate
1987-1997 0.16 (0.001) 0.13 (0.037)
1992-2002 0.24 (0.012) 0.08 (0.046)
1997-2007 0.12 (0.012) 0.08 (0.079)
Weights No Value Added

Note: Each regression instruments for labor augmenting productivity measure B̂

K with B̂

M .
All regressions contain four digit SIC or six digit NAICS industry fixed e↵ects, as well as age and
multiunit status controls. Standard errors are robust.

5 Conclusion

This article has identified the micro elasticity of substitution using di↵erences in wages across

local areas in the US. I then estimated that the elasticity of substitution is between 0.3 and

0.5 for manufacturing, with estimates in a similar range across industries. These estimates

held up to a number of robustness checks, including instruments for the local wage due

to cross-sectional amenity di↵erences and local labor market conditions, controls for firm

level di↵erences in productivity or rental prices, state-level di↵erences in regulation, and

examination of a set of narrowly defined unclustered industries.

I then used these estimates of the elasticity to identify labor augmenting productiv-

ity. I found that the measure of labor augmenting productivity is highly persistent and

strongly correlated with plant value added, exports, and growth. These results point to

labor augmenting productivity as an important dimension of productivity, and improve our

understanding of how productivity a↵ects firms. With labor augmenting productivity, pro-

ductivity changes will also a↵ect firm factor shares.
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This article has examined the micro elasticity of substitution between capital and labor.

The cross-sectional identification strategy used in this article could also be used to understand

the substitution possibilities of intermediate inputs with capital and labor, and of di↵erent

varieties of labor or capital with each other and other inputs.
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