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B Data

This section discusses the construction of the data.

B.1 Economic Censuses

We use the 1987 through 2007 Census of Manufactures to estimate plant elasticities of substitution
and demand. We remove all Administrative Record plants because these plants do not have data
on output or capital. We also eliminate a set of outliers and missing values from the dataset. We
first remove all plants born in the given Census year, as well as a small set of plants with missing
age data. We then remove plants with zero, missing, or negative data for the equipment capital
stock, structures capital stock, labor costs, value added, or materials. We also remove plants above
the 99.5th percentile or below the 0.5th percentile of their 2-digit SIC industry on these variables
to remove plants with potential data problems. Finally, we drop plants in Alaska and Hawaii as
we do not have amenity instruments for these locations.

For capital costs, we multiply capital stock measures by rental rates of capital. For the capital
stock, we use the Census constructed measure of perpetual inventory capital stock, which is con-
structed for structures and equipment capital separately. The Census uses book values of capital
together with investment histories to construct these capital stocks; thus, they will be primarily
based upon book values for plants that exist only in Census years, while for large plants always
sampled in the ASM, they may be based on a long time span of continuous investment histories.

The Annual Survey of Manufactures tracks about 50,000 plants over five year panel rotations
that are more heavily weighted towards large plants. We use the ASM to calculate the heterogeneity
indices and materials shares. The ASM has data on plant investment over time as well as book
values of the stock of capital, which are used by the Census to construct perpetual inventory
measures of capital stocks. The ASM plant samples also have data on the value of non-monetary
compensation given to employees, such as health care or retirement benefits, which we use to better
measure payments to labor. We include non-monetary compensation as part of labor costs when
we use the 2002 and 2007 Census of Manufactures, as these years include non-monetary labor
compensation for all plants.

B.2 Rental Rates

We define the rental rate using the external real rate of return specification of Harper et al. (1989).
The rental rate for industry n is defined as:

Ri,t = Ti,t(pi,t−1ri,t + δi,tpi,t)

where ri,t is a constant external real rate of return of 3.5 percent, pi,t is the price index for capital
in that industry, δi,t is the depreciation rate for that industry, and Ti,t is the effective rate of capital
taxation. We calculate Ti,t following Harper et al. (1989) as:

Ti,t =
1− utzi,t − ki,t

1− ut

where zi,t is the present value of depreciation deductions for tax purposes on a dollar’s investment
in capital type i over the lifetime of the investment, ki,t is the effective rate of the investment tax
credit, and uit is the effective corporate income tax rate. We obtained zi,t, uit, and ki,t from Dale
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Jorgenson at the asset year level; we then used a set of capital flow tables at the asset-industry
level to convert these to the industry level.

To calculate depreciation rates δi,t, we take depreciation rates from NIPA at the asset level and
use the capital flow tables to convert them to the industry level. Our primary source of prices of
capital pi,t are from NIPA, which calculates separate price indices for structures and equipment
capital.

The capital flow tables and investment price series depend upon the industry definition; because
the US switches from SIC basis to NAICS basis during this period, we construct separate rental
price series for SIC 2 digit industries and NAICS 3 digit industries. Finally, when we examine the
aggregate we have to aggregate all of the rental price series; we do so by calculating Tornqvist
indices between equipment and structures capital for each industry, and then a Tornqvist index
across rental rates for each industry. The Tornqvist indices allow for the share of equipment capital
in industry capital and for the share of different industries in manufacturing capital to change over
this period.

B.3 Local Wages

We construct measures of the local wage in order to estimate the elasticity of substitution across
plants, using both worker and establishment level data to measure the local area wage. The primary
dataset that we use is the Census 5 percent samples of Americans, together with the American
Community Surveys. Both of those datasets have data on wages and local area geographic location
for a large sample of workers.

To obtain the local wage, we first calculate the individual wage for workers with age between
20 and 65 who are employed in the private sector as workers earning a wage or salary and who do
not live in group quarters. We calculate the wage as an hourly wage, defined as total yearly wage
and salary income divided by total hours worked. We use the CPI to deflate wage income, which
affects the wages matched to the 2007 Census of Manufactures, as these rely on information on
workers over 5 different years of the ACS.

We measure total hours worked as weeks worked per year multiplied by hours worked per week.
We remove all individuals with zero or missing income or zero total hours worked. In 2008 and
2009, only the intervalled number of weeks worked is available. We thus impute the number of
weeks worked for individuals in 2008 and 2009 based on averages of the number of weeks worked
from 2005 to 2007 from cells of the intervalled weeks worked, an indicator if the worker is female, an
indicator if the worker is black, the educational attainment of the worker (as constructed below),
and age (as a set of dummy variables for age intervals).

Total wage and salary income in the Population Censuses and American Community Surveys
are topcoded. The topcode threshold is $140,000 in 1990, $175,000 in 2000, and the 99.5% of the
state distribution of income for that year in the ACS years. For all cases, we impute the total wage
and salary income to 1.5 times the topcode if the wage and salary income is topcoded, in line with
Acemoglu and Angrist (2000).

Before calculating local area wages, we adjust measures of local wages for differences in worker
characteristics through regressions with the individual log wage as a dependent variable. We in-
clude education through a set of dummy variables based upon the worker’s maximum educational
attainment, which include four categories: college, some college, high school degree, and high school
dropouts. We define experience as the individual’s age minus an initial age of working that depends
upon their education status, and include a quartic in experience in the regression. We also have data
on the race of workers and so include three race categories of white, black, and other, as well as an
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indicator for Hispanic origin and gender. We include six occupational categories: Managerial and
Professional; Technical, Sales, and Administrative; Service, Farming, Forestry, and Fishing; Preci-
sion Production, Craft, and Repairers; and Operatives and Laborers. Finally, we include thirteen
industrial categories: Agriculture, Forestry, and Fisheries; Mining; Construction; Manufacturing;
Transportation, Communications and Other Public Utilities; Wholesale Trade; Retail Trade; Fi-
nance, Insurance, and Real Estate; Business and Retail Services; Personal Services; Entertainment
and Recreation Services; Professional and Related Services; and Public Administration.

We then regress the local wage on all of these characteristics, with separate regressions by year.
For wages matched to the 2007 Census of Manufactures which use multiple ACS years, we include
year effects as well to allow the overall wage distribution to vary over time.

We then aggregate the residuals from this regression to the commuting zone level. The Popu-
lation Census and ACS data only contain information on the Public Use Micro Area (PUMA) of
the individual worker. Thus, we use crosswalks from Autor and Dorn (2013) in order to aggregate
from the PUMA to the Commuting Zone. Since some PUMAs contain multiple commuting zones,
we weight each residual wage by the multiple of the person weight in the Census or ACS and a
weight that indicates the fraction of the PUMA in the given Commuting Zone. We then construct
average residual wages for each commuting zone.

Because the Economic Census is conducted in different years from the Population Censuses, we
match the 1987 and 1992 Censuses of Manufactures to wages from the 1990 Population Census,
the 1997 and 2002 Censuses of Manufactures to wages from the 2000 Population Census, and the
2007 Census of Manufactures to the 2005-2009 American Community Surveys.

The second dataset that we use for our IV and panel data specifications is the Longitudinal
Business Database, which contains data on payroll and employment for all US establishments. We
construct the establishment wage as total payroll divided by total employment. We measure the
local wage as the mean log wage at the commuting zone level, after regressing the log establishment
wage on indicator variables for 4 digit SIC or 6 digit NAICS industry codes to remove industry
effects. We match the Longitudinal Business Database to its equivalent year in the Census of
Manufactures.

B.4 Instruments

We use three different sets of instruments for the local wage in order to estimate the elasticity of
substitution.

The first set of instruments are local amenities that could affect labor supply developed by
Albouy et al. (2016). They include measures of the slope, elevation, relative humidity, average dew
point, average precipitation, and average sunlight for each local area. We also include multiple
measures of temperature. The first measures are the number of heating degree days (HDD) and
cooling degree days (CDD). HDD measures how cold a location is, and is defined as the sum of
the difference between 65F and each day’s mean temperature, for all days colder than 65F. CDD
is a measure of how hot a location is, and is defined as the sum of the difference between each
day’s mean temperature and 65F, for all days warmer than 65 F. In addition, we include a set of
temperature day bins which bin the average number of days in a year over 30 years that the average
temperature (mean of minimum and maximum temperature) lie within the bin. We include 6 bins
of 10 degrees Centigrade each.

The amenities in Albouy et al. (2016) were collected at the PUMA level. We aggregate them
to the commuting zone level by taking an average across PUMAs in the same commuting zone,
weighting PUMAs by their population in the commuting zone. We do not have amenities for Alaska
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and Hawaii, and all specifications exclude these states.
The second instrument, from Bartik (1991), is based upon the differential impact of national

level shocks to industry employment across locations. Positive national shocks to an industry should
increase labor demand and wages more in areas with high concentrations of that industry. Formally,
the predicted growth rate in employment for a given location is the sum across industries of the
product of the local employment share of this industry and the 5 or 10 year change in national level
employment for that industry. We use the Longitudinal Business Database, which contains all US
establishments, to construct these instruments.

The implicit assumption here is that changes in industry shares at the national level are inde-
pendent of local manufacturing plant productivity. To help ensure that this assumption holds, we
exclude manufacturing industries from the labor demand instrument. We calculate the instrument
defining locations by commuting zones and industries at the SIC 4 digit level, or NAICS 6 digit
level, depending upon the years. We drop industries with national employment of less than 100
people as likely data errors.

We also use a second set of labor demand instruments from Beaudry et al. (2012). The first
instrument is the interaction of predicted changes in industry employment shares and industry
initial wage premia. The second instrument is the interaction of national changes in industry
wage premia and predicted future industry employment shares. We also exclude manufacturing
industries from these instruments. National wage premia for an industry are calculated as the
mean log payroll to employment ratio across the entire LBD for a given year.

The main complication with constructing the Bartik and BGS instruments is that industry def-
initions change over time; in 1987, when industry definitions switch from 1972 industry definitions
to 1987 industry definitions, and in 1997, when industry definitions switch from the 1987 SIC defi-
nitions to NAICS definitions. Thus, we often cannot construct exact 10 year instruments because
industry definitions are not consistent over time. Instead, we use 10 year instruments for 1987,
1997, and 2002, and 5 year instruments and their lag for 1992 and 2007. For 1987, the instrument
used is from 1977 to 1986; for 1997, from 1987 to 1997; and for 2002, from 1992 to 2001. For 1992,
we use the 1982 to 1986 and 1987 to 1992 instruments. For 2007, we use the 1997 to 2001 and 2002
to 2007 instruments.

B.5 Homogeneous Products

We use six homogeneous products: Boxes, Bread, Coffee, Concrete, Processed Ice and Plywood.1

All of the products are defined as in Foster et al. (2008). We use data from 1987-1997 as capital
data was imputed before 1987 for non-ASM plants, although we do not use data for 1992 for
Processed Ice (because of data errors), 1987 for Boxes (because of a product definition change),
and 1997 for Concrete (because quantity data was not recorded). We remove Census balancing
codes imputed by the Census to make product level data add up to overall revenue data in cases
where we can identify them. We also remove receipts for contract work, miscellaneous receipts,
resales of products, and products with negative values.

We then remove all plants for which the product’s share of plant revenue (measured after
removing the balancing codes and other items mentioned above) is less than 50 percent. For
each product, we have measures of both total quantity produced and revenue, which allows us to
calculate product price as revenue over quantity. We delete all plants for which the ratio of product
price to median product price is between .999 and 1.001, as these plants likely have quantity data

1Foster et al. (2008) examine 5 additional products: Carbon Black, Flooring, Gasoline, Block Ice, and
Sugar; small samples in the years we study preclude this analysis.
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imputed by the Census. We also remove plants with prices greater than ten times the median price
or less than one-tenth the median price as potential mismeasured outliers.

C Micro Capital–Labor Elasticity Estimates

In this section, we examine differences in the plant capital-labor substitution elasticity across plants
in multiple ways, including across age cohorts, quantiles of the plant capital cost to labor cost ratio,
and industries.

C.1 Cohort Level Estimates

We first examine whether the plant capital-labor substitution elasticity varies across age cohorts.
The elasticity could vary across age cohorts for multiple reasons. First, different vintages of plant
technology could have different substitution elasticities. Second, exit of plants over time could lead
to a changing average plant level elasticity.

We examine the plant level elasticity by 5 year age cohorts in Table C.1. Because we exclude
plants entering in the Census year from our analysis, the first cohort is of plants between one to
four years of age. The last cohort for each Census year also includes all plants operational before
1972, as the year of plant birth is censored at 1972.

Overall, we find fairly small differences in elasticities across age cohorts. Across all years and
age cohorts, the smallest elasticity is 0.16 and largest 0.62. Moreover, across Census years, there
is no clear pattern to differences in the elasticity across age cohorts. For 1987, 1997, and 2007,
the cohort of the youngest plants does have an elasticity about 0.15 to 0.25 larger than the next
youngest cohort. But, there is little difference between these cohorts for 1992 and 2002. In general,
thus, we find no evidence for substantial differences in plant elasticities across age cohorts.

Table C.1 Age Cohort-Level Estimates of the Plant Capital-Labor Substitution Elasticity

1-4 5-9 10-14 15-19 20-24 25-29 30-34

1987 0.62 (0.05) 0.37 (0.05) 0.40 (0.04)
1992 0.45 (0.04) 0.42 (0.03) 0.41 (0.04) 0.52 (0.05)
1997 0.40 (0.06) 0.21 (0.06) 0.21 (0.06) 0.16 (0.07) 0.36 (0.08)
2002 0.25 (0.09) 0.26 (0.07) 0.31 (0.08) 0.37 (0.08) 0.33 (0.10) 0.34 (0.10)
2007 0.57 (0.07) 0.43 (0.06) 0.45 (0.07) 0.45 (0.07) 0.38 (0.08) 0.41 (0.08) 0.45 (0.06)

Note: Standard errors are in parentheses. The table contains estimates of the elasticity of sub-
stitution by age cohort. Our measures of age are truncated, as we do not observe year of plant
birth for plants operational before 1972. Thus, the oldest age cohort for each year also includes
plants operational before 1972. All regressions include 4 digit SIC or 6 digit NAICS industry fixed
effects, age fixed effects, and a multiunit status indicator and have standard errors clustered at the
commuting zone level. Wages are estimated using data on workers from the Population Censuses
and as defined in the text.

C.2 Non-CES Production Functions

We examine the case of local elasticities empirically by allowing elasticities to vary by quantile.
Because we need to control for quantile-invariant industry fixed effects, we use the two-step approach
of Canay (2011) to estimate quantile elasticities. We estimate the elasticity at the 10th through 90th
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quantile both among all plants and among plants within each 2-digit industry for each year. The
elasticity varies across quantiles in an inverse U shape, with elasticities close to zero at the bottom
quantiles, a peak close to the median, and then a slight fall for high quantiles. Web Appendix C.3
contains further details of the differences across quantiles and the estimation approach.

We then obtain σ̄n by assigning each plant the elasticity for its closest conditional quantile. In
Table C.2, column (2) reports estimates of the average σ̄n under the assumption that elasticities at
each quantile are the same across industries, while column (3) allows the these quantile elasticities
to vary across industries. The average baseline OLS estimate across years is 0.39 (column (1)),
compared to 0.45 using common quantile elasticities and 0.47 using separate quantile elasticities
for each industry. Thus, the conditional quantile approach for allowing local elasticities increases
our estimates of the aggregate elasticity slightly.

A second approach is to use plants’ capital shares as the dependent variable instead of the
logarithm of the ratio of capital cost to labor cost. Our goal is to estimate an approximation to
σ̄n ≡

∑
i∈In

αni(1−αni)θni∑
i′∈In αni′ (1−αni′ )θni′

σni.

Consider the following regression equation:

αnic = γn + βn lnwc + εnic. (C.1)

Here, βn is an estimate of how the average capital share in a location covaries with relative factor
prices in the location, i.e.,

βn ≈
dE[αnic]

d lnw/r
. (C.2)

In Web Appendix C.4, we show that, to a first order approximation, the estimator β̂n converges to
a weighted average of terms αnic(1− αnic)(σnic − 1)

β̂n
p→
∑
c

∑
i∈Inc

ρnicαnic(1− αnic)(σnic − 1) (C.3)

where Inc are the set of plants in industry n in location c and the weights ρnic = (lnwc−lnw)2∑
c̃

∑
ĩ∈Inc̃

(lnwc̃−lnw)2

sum to one.
Given our estimate for β, we compute σ̄n using ˆ̄σ − 1 = β̂

(1−χ)α(1−α) . Column (4) of Table C.2

presents these estimates pooling across industries within the manufacturing sector.2 The average
elasticity across years is 0.44.3

Compared to our goal of estimating σ̄n, however, βn weighs observations by ρni instead of the
cost weights θni. First, plants in locations with more extreme wages are weighted more heavily,
as is typical for least squares estimators. We have verified in Monte-Carlo simulations that this
weighting does not lead to a significant bias; see Web Appendix C.4 for details. Second, we do not
weight by θni. To address this latter concern, we estimate (C.1) weighting each observation by θni.

2In Web Appendix C.4, we also estimate σ̄n separately for each industry and then take the appropri-
ate average. In addition, we pursue an instrumental variables specification using the instruments used in
Section 3.3. Estimates are quantitatively similar across specifications.

3The regression in column (4) of Table C.2 differs from (C.1) in that it includes the controls for a vector of
plant characteristics Xnic (detailed in Table I): αnic = βn lnwc+γXnic+εnic. We show in Web Appendix C.4

that, in this case, the estimator converges in probability to β̂n
p→
∑
c

∑
i∈Inc ρ

∗
nicαnic(1 − αnic)(σnic − 1)

where the weights are ρ∗nic =
lnw∗nic(lnwc)−lnw)∑

c̃

∑
ĩ∈Inc̃

lnw∗
nĩc̃

(lnwc̃−lnw)
and lnw∗nic are the residuals from a regression of

lnwc on Xnic.
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However, we show analytically and confirm in our Monte-Carlo that this weighting also introduces
an upward bias in elasticity estimates: larger plants tend to be more capital intensive which means
that the weights are correlated with the error term. Thus, we view the weighted estimate as an
upper bound on σ̄n. Column (5) shows that these estimates average 0.51 across years.

Given the narrow range of estimates in Table C.2, we do not believe that assuming a constant
plant-level elasticity is a first order issue for our aggregation framework.

Table C.2 Non-CES Estimates of Average Plant Capital-Labor Substitution Elasticity

(1) (2) (3) (4) (5)
Quantile Quantile Avg Capital Share Avg Capital Share

Baseline Sector Level Industry Level Unweighted Weighted

1987 0.43 0.46 0.47 0.45 0.56
1992 0.48 0.49 0.54 0.52 0.57
1997 0.34 0.39 0.45 0.43 0.58
2002 0.34 0.40 0.43 0.41 0.44
2007 0.38 0.52 0.45 0.40 0.38

Note: The table contains five specifications. All specifications average across separate plant
elasticity of substitution for each industry using the cross industry weights used for aggregation. In
(1), we estimate a separate OLS estimate using our baseline estimation strategy as in Section 3.3.
In (2) and (3), we estimate separate elasticities for the 10th to the 90th quantiles using the two step
estimation procedure of Canay (2011); (2) assumes a common estimate for all of manufacturing and
(3) separate quantile elasticities for each 2 digit SIC or 3 digit NAICS industry. In (4) and (5), we
estimate (C.1) by having the capital share as the dependent variable; (4) does not weight the data,
while (5) weights plants by their total cost of capital and labor.

All regressions include industry fixed effects, age fixed effects, and a multi-unit status indica-
tor. Wages used are the average log wage for the commuting zone, computed as wage and salary
income over total number of hours worked adjusted for differences in worker characteristics using
the Population Censuses.

C.3 Quantile Estimates

Our baseline econometric estimates assume that the effect of factor prices on relative factor costs is
a pure location shift; that is, when moving from low wage commuting zones to high wage commuting
zones, the entire distribution of the capital-labor ratio shifts uniformly. In this section, we examine
this assumption through quantile estimates of the elasticity of substitution.

An immediate difficulty with any quantile estimate is that we have to control for hundreds of
industry fixed effects. We do so through the two step estimation procedure of Canay (2011). We
assume that the industry fixed effects are quantile invariant, and so are pure location shift effects.
We first estimate our baseline OLS regressions in order to remove the estimated industry effects
from the capital cost to labor cost ratio. We then estimate quantile regressions of the residual
capital cost to labor cost ratio on the local area wage as well as the age and multiunit status
controls.

We estimate these quantile regressions for the 10th through 90th quantile, both for all plants
in manufacturing and by 2 digit SIC or 3 digit NAICS industry. Figure C.1 depicts these estimates
for all plants in manufacturing across Census years; the left figure uses Population Census based
wages while the right figure uses LBD based wages. We find a similar story across years and
wage definitions. Moving from low wage commuting zones to high wage commuting zones, the
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(a) Population Census Based Wages (b) LBD Based Wages

Figure C.1 Quantile Estimates of the Plant Capital-Labor Elasticity of Substitution

Note: Both figures depict the elasticity of substitution estimated by quantile for each Census year.
The left figure is based on wages from worker data from the Population Censuses, while the right
figure is based on wages from establishment data from the LBD. Both are as defined in the text.

capital-labor ratio increases much more for the right tail of high capital-labor ratio plants than for
the left tail of low capital-labor ratio plants. The elasticity tends to peak between the 50th and
70th quantile and then decrease slightly. For example, for the worker based estimates in 1987, our
estimated elasticities are 0.06 at the 10th quantile, 0.2 at the 20th quantile, 0.6 at the median and
70th quantile, and 0.43 at the 90th quantile.

In order to construct an average plant level elasticity, we assign the associated quantile estimate
to plants whose quantile of the capital cost to labor cost ratio distribution relative to the rest of
its industry is close to the quantile estimate. Thus, we assign the 10th quantile estimate to plants
between the 0th and 15th quantile on the plant capital cost to labor cost ratio, the 20th quantile
estimate to plants between the 15 and 25 quantile on the plant capital cost to labor cost ratio, etc.

In Table C.3, we report estimates of the averaged quantile estimates across industries. The
Sector Level estimates are based upon quantile elasticities estimated at the manufacturing level,
and then averaged within and across industries to the manufacturing level; the Industry level
estimates are based upon quantile elasticities at the industry level, and then averaged within and
across industries to the manufacturing level. Estimates in Table C.3 use both Population Census
based and LBD based wages. The quantile based estimates range from 0.39 to 0.54 using Population
Census based wages, and from 0.54 to 0.63 using LBD based wages, and so are slightly higher than
our baseline estimates.

C.4 Capital Share as a Dependent Variable

Consider the regression
αi = β0 + βωcz(i) + εi. (C.4)
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Table C.3 Average Quantile Estimates of Average Plant Capital-Labor Substitution
Elasticity

Quantile Level Sector Industry Sector Industry

1987 0.46 0.47 0.56 0.57
1992 0.49 0.54 0.54 0.59
1997 0.39 0.45 0.55 0.60
2002 0.40 0.43 0.54 0.56
2007 0.52 0.45 0.63 0.59

Wage Pop Census LBD

Note: The table contains four specifications. All specifications average across separate plant
elasticity of substitution for each industry using the cross industry weights used for aggregation.
All specifications are based on estimates of separate elasticities for the 10th to the 90th quantiles
estimated using the two step estimation procedure of Canay (2011); the first and third specification
assumes a common estimate for all of manufacturing and the second and fourth specification sepa-
rate quantile elasticities for each 2 digit SIC or 3 digit NAICS industry.
All regressions include industry fixed effects, age fixed effects, and a multi-unit status indicator.
Wages used are the average log wage for the commuting zone, computed as wage and salary income
over total number of hours worked adjusted for differences in worker characteristics from the Pop-
ulation Censuses in the first and second specifications and as payroll/number of employees at the
establishment level from the LBD in the third and fourth specifications.

Estimating (C.4) using OLS yields the following estimator

β̂ =

∑
i

(
ωcz(i) − ω̄

)
(αi − ᾱ)∑

i

(
ωcz(i) − ω̄

)2
where the constants ᾱ ≡ 1

|I|
∑

i αi and ω̄ ≡ 1
|I|
∑

i ωcz(i).

Consider the function αi(ω), which is what i’s capital share would be with relative factor prices
ω so that, abusing notation, αi = αi

(
ωcz(i)

)
. A first order approximation of αi(ω̄) around ωcz(i)

yields

αi = αi
(
ωcz(i)

)
≈ αi(ω̄) + αi (1− αi) (σi − 1)(ωcz(i) − ω̄) +O

((
ωcz(i) − ω̄

)2)
(C.5)

Combining these equations and rearranging gives

β̂ =

∑
i

(
ωcz(i) − ω̄

)2
αi(1− αi)(σi − 1)∑

i

(
ωcz(i) − ω̄

)2 +

∑
i

(
ωcz(i) − ω̄

)
(αi (ω̄)− ᾱ)∑

i

(
ωcz(i) − ω̄

)2 (C.6)

Our baseline regressions (without using an instrument) implicitly assumed that a plant’s tech-
nology is independent of the local wage. We first proceed under the assumption that this assumption
remains valid. We then discuss a corresponding approach using instrumental variables.

Since E
[(
ωcz(i) − ω̄

)
(αi(ω̄)− ᾱ)

]
= 0, the second term of (C.6) converges in probability to

zero, so that

β̂
p→
∑
i

αi(1− αi)θi(σi − 1) +
∑
i

(ρi − θi)αi(1− αi)θi(σi − 1)

where ρi =
(ωcz(i)−ω̄)2∑
ĩ(ωcz(̃i)−ω̄)2 . We do not have a strong reason to believe that the final term is positive

or negative, as it is difficult to know how (ρi − θi) covaries with ωcz(i). In any case, our Monte
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Carlo exercise described below suggests that the bias is likely to be small.

Weighted Regression

Consider next estimating (C.4) using weighted least squares with weights θi. This yields the
following estimator

β̂θ =

∑
i θi
(
ωcz(i) − ω̄

)
(αi − ᾱ)∑

i θi
(
ωcz(i) − ω̄

)2
where the constants ᾱ ≡

∑
i θiαi and ω̄ ≡

∑
i θiωcz(i). Using the first order approximation of αi(ω̄),

this can be written as

β̂θ =
∑
i

αi(1−αi)θi(σi−1)+
∑
i

(ρi−θi)αi(1−αi)θi(σi−1)+

∑
i

(
ωcz(i) − ω̄

)
θi (αi(ω̄)− ᾱ)∑

i

(
ωcz(i) − ω̄

)2
θi

(C.7)

where ρi =
(ωcz(i)−ω̄)2θi∑
ĩ(ωcz(̃i)−ω̄)2θĩ

.

As discussed above, our Monte Carlo exercise suggests that the bias introduced by the second
term is small.

We now argue that the third term is likely to be positive, leading to an upward bias, i.e., the
estimate will tend to overstate σ̄. To see why, note that it is well known larger plants tend to have
higher capital shares, even within narrowly defined industries. Thus we expect

∑
θi (αi (ω̄)− ᾱ) >

0. An increase in ω raises θi more when αi(ω̄) is larger, i.e., when (αi (ω̄)− ᾱ) is larger. Thus the
positive covariance would be strengthened. Conversely, a reduction in ω weakens the covariance.
Together, these imply that the second term is likely to be positive, so our estimator of σ̄ is likely
to be biased upwards.

Monte Carlo

We then examine these biases using Monte Carlo simulations. We simulate an economy with 700
locations that each contain 100 plants. We normalize the rental rate to 1 and draw the natural
log of each location’s wage from a uniform (0,1) distribution. We assume that each plant produces

using the CES production technology Yi =

[
(AiKi)

σi−1

σi + (BiLi)
σi−1

σi

] σi
σi−1

with an idiosyncratic

elasticity of substitution drawn from a fixed distribution and an isoelastic demand curve with
demand elasticity of 3. We also draw technology parameters Ai and Bi from a joint lognormal. We
normalize the mean of Ai to 1, and choose the mean of Bi, the variances of Ai and Bi as well as
their covariance to match the following four moments: an aggregate capital share of 0.3, a value of
χ of 0.1, the 90-10 ratio of marginal cost across plants of 2.7, and the coefficient of a regression of
log( αi

1−αi ) on log θi (weighting by θi) of 0.08.4

We examine three parameterizations of the distribution of σi across plants; the densities of σi
for each parameterization are depicted in Figure C.2 below. All three distributions are engineered
to have a median value of σi close to 0.5. The first parameterization in red (“Low Variance

4Figure 5 depicts the aggregate share for the manufacturing sector over time, and Figure 1 values of χ
across industries. Table 1 in Syverson (2004) examines dispersion in productivity (our value corresponds
to the 90-10 ratio in TFP computed using plant specific input elasticities). Table 3 in Raval (2019) the
coefficient of regressions of the capital share to labor share ratio on value added, weighting by value added,
with estimates ranging from 0.05 to 0.09 using the Census of Manufactures across years, and 0.06 to 0.11
using the Annual Survey of Manufactures.
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LogNormal”) is drawn from a lognormal draw from Lognormal(−1,0.22) plus 0.1 (where -1 is the
mean of the underlying normal distribution, and 0.2 the standard deviation of the underlying
normal distribution); its density is concentrated around the median, with 98% of the distribution
between 0.33 and 0.69. The second parameterization in green (“High Variance LogNormal”) is
drawn from a lognormal draw with Lognormal(−0.5,0.42) minus 0.1. It has a distribution that is
somewhat skewed to the right, with 5% of the distribution above 1.07 and 1% above 1.44. Finally,
the third parameterization (“Uniform”) in blue is a uniform draw between 0.1 and 0.9.

Figure C.2 Density of σ

Note: This graph depicts the density of σi for three different parameterizations of σ. In red, the
parameterization is 0.1 + a lognormal draw with Lognormal(−1,0.22). In green, the parameterization
is -0.1 + a lognormal draw with Lognormal(−0.5,0.42). In blue, the parameterization is a uniform
draw between 0.1 and 0.9.

We then run 200 simulations for each of the three parameterizations of the distribution of σi.
Table C.4 contains these estimates. Column (2) reports the true weighted average σ̄, the object we
are trying attempting to recover. Column (3) reports an unweighted average of σi. Columns (4)
and (5) report estimates of σ̄ that correspond to columns (4) and (5) of Table C.2 and are derived
from estimating αi on the log of the wage in the plant’s location. Column (4) reports the coefficient
on an unweighted regression; column (5) weights by θi.

The unweighted average σi and estimates using the unweighted regression are, in general, fairly
close to σ̄. For the high variance lognormal parameterization of σi, the differences are the largest at
0.62 for σ̄, compared to 0.56 for the unweighted average of σi and 0.54 for the unweighted regression.
Across all three parameterizations, estimates using the weighted regression overstate the elasticity
by about 0.2, as expected.

Covariates

Finally, consider the regression
αi = βωcz(i) + γxi + εi. (C.8)
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Table C.4 Monte Carlo Estimates of Average Plant Level Substitution Elasticity

σ̄ Average σi Unweighted Regression Weighted Regression

Low Variance LogNormal 0.48 0.48 0.51 0.71
High Variance LogNormal 0.62 0.56 0.54 0.82
Uniform 0.53 0.50 0.55 0.71

Note: The table contains four specifications based on 200 simulations with three different param-
eterizations of σi: the Low Variance LogNormal parameterization is 0.1 + a lognormal draw with
Lognormal(−1,0.22), the High Variance LogNormal parameterization is -0.1 + a lognormal draw
with Lognormal(−0.5,0.42), and the Uniform parameterization is a uniform draw between 0.1 and
0.9. For each, we report the average value of σ̄, an unweighted average of σi, and estimates of the
average σ from an unweighted and weighted regression (with cost weights) of αi on the log wage.

where xi is a set of characteristics of plants i such as age. Our identifying assumption is that for
any fixed wage level ω̄, Cov

(
ωcz(i), αi(ω̄)|xi

)
= 0.5 Using the Frisch-Waugh-Lovell Theorem, we

can express the estimator as

β̂ =

∑
i ω
∗
i αi∑

i(ω
∗
i )

2
(C.9)

where ω∗i are the residuals after regressing ωcz(i) on xi. Note that
∑

i ω
∗
i = 0 by construction. Using

same approximation as (C.5) and noting that
∑

i(ω
∗
i )

2 =
∑

i ω
∗
i (ωcz(i) − ω̄), we have

β̂ ≈
∑

i ω
∗
i

[
αi(1− αi)(σi − 1)(ωcz(i) − ω̄) + αi(ω̄)

]∑
i ω
∗
i

(
ωcz(i) − ω̄

)
=

∑
i ω
∗
i (ωcz(i) − ω̄) [αi(1− αi)(σi − 1)]∑

i ω
∗
i

(
ωcz(i) − ω̄

) +

∑
i ω
∗
i αi(ω̄)∑

i ω
∗
i

(
ωcz(i) − ω̄

)
Our identifying assumption is that for any fixed wage level ω̄, Cov

(
ωcz(i), αi(ω̄)|xi

)
= 0, or

E[ω∗i αi(ω̄)] = 0. As a result, we have

β̂
p→
∑
i

ρ∗iαi(1− αi)(σi − 1)

where ρ∗i ≡
ω∗i (ωcz(i)−ω̄)∑
i′ ω
∗
i′(ωcz(i′)−ω̄)

Estimates using Capital Share as Dependent Variable

In Table C.5, we report estimates of the plant level elasticity of substitution using a specification in
which the capital share is the dependent variable. The regression specification, for a given Census
year, is:

αnic = βn logwc + γXnic + εnic. (C.10)

The first set of estimates assumes that βn = β and so uses data from all of manufacturing.
The second set of estimates allows βn to vary by 2 digit SIC or 3 digit NAICS industries, and then
averages these estimates across industries using cross industry weights.

5Or, for the IV specification, Cov
(
zcz(i), αi(ω̄)|xi

)
= 0.
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The first and fourth columns are based on OLS estimates using worker based wages from
the Population Censuses, and the second and fifth columns establishment wages from the LBD.
The third and sixth columns are based on IV specifications using the amenity, Bartik, and BGS
instruments. The first set of three columns do not weight the data, while the second set of three
columns weight plants based on their total cost of capital and labor. The estimates using the
capital share as a dependent variable range from 0.40 to 0.67 unweighted, and from 0.38 to 0.70
weighting with total cost weights. The unweighted estimates are only slightly higher than our
baseline estimates, while the weighted estimates are slightly higher than the unweighted estimates.

Table C.5 Estimates of Plant Capital-Labor Substitution Elasticity using Capital Share
As Dependent Variable

Unweighted Total Cost Weights
Year OLS OLS IV OLS OLS IV

Manufacturing Level Regressions
1987 0.42 (0.04) 0.53 (0.04) 0.51 (0.05) 0.50 (0.09) 0.64 (0.10) 0.58 (0.12)
1992 0.55 (0.02) 0.60 (0.02) 0.46 (0.09) 0.53 (0.10) 0.63 (0.09) 0.54 (0.05)
1997 0.45 (0.03) 0.60 (0.03) 0.54 (0.04) 0.54 (0.10) 0.70 (0.07) 0.50 (0.08)
2002 0.48 (0.04) 0.60 (0.03) 0.56 (0.04) 0.43 (0.08) 0.60 (0.06) 0.42 (0.07)
2007 0.57 (0.03) 0.67 (0.02) 0.64 (0.03) 0.45 (0.08) 0.64 (0.06) 0.51 (0.08)

Industry Specific Regressions
1987 0.42 0.53 0.51 0.56 0.67 0.63
1992 0.52 0.56 0.53 0.57 0.64 0.54
1997 0.43 0.57 0.50 0.58 0.68 0.52
2002 0.41 0.53 0.47 0.44 0.57 0.44
2007 0.40 0.53 0.51 0.38 0.55 0.49

Wage Pop Census LBD LBD Pop Census LBD LBD

Note: All regressions include industry dummies, age fixed effects, and a multiunit status indicator.
Instruments include amenity, Bartik, and BGS instruments. Wages used are the average log wage
for the commuting zone. In the first and fourth columns, the wage is computed as wage and salary
income over total number of hours worked adjusted for differences in worker characteristics from the
Population Censuses; in all other cases, the wage is computed as payroll/number of employees at
the establishment level from the LBD. The dependent variable is the capital share.

C.5 Dynamic Panel Estimates

In this section, we use the panel structure of our data in order to examine how individual plants
respond to changes in factor prices. This adjustment may be slow; the long-run response to a
factor price change should be larger than the short-run adjustment. We therefore use dynamic
panel methods to examine both the unbalanced panel (which still requires plants that exist in at
least three consecutive Census years), as well as the balanced panel of plants that exist in all five
Census years.6

6Because our dynamic panel specification with two lags requires plants to be present for three consecutive
Economic Censuses, there could be differences between the elasticity for these plants compared to the overall
sample. These plants are likely to be different in some ways from the typical manufacturing plant; in
particular, they may be older and larger, or belong to a multi-unit firm. We examine differences by age
cohort in Web Appendix C.1 in the cross-section and do not find a clear gradient of the elasticity with age.
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We estimate the following econometric model for plant i and time period t:

log
Kitc

Litc
= ρ5 log

Kit−5c

Lit−5c
+ ρ10 log

Kit−10c

Lit−10c
+ β log(wtc/rt) + ηi + δt + γn(i)t+ εitc (C.11)

where ηi is an individual plant fixed effect, ρ5 and ρ10 measure the degree of persistence in the
capital-labor ratio through the five year and ten year lag of the capital-labor ratio, and β measures
the short-run elasticity of substitution. We estimate this relationship in terms of the capital-labor
ratio, and not the capital cost - labor cost ratio, so that the long run capital-labor elasticity is

β
1−ρ5−ρ10

.7 Because we examine plants over time, we decompose the bias of plant i’s technology
into a plant fixed effect, ηi, a time fixed effect, δt, an 3-digit industry specific trend, γn(i)t, and a
residual εitc.

We then use the Blundell-Bond panel data model to estimate this relationship.8 We estimate
two specifications; in the first, the wage-rental ratio is treated as exogenous after the time controls
(i.e. exogenous with respect to εitc), while in the second specification, we use all of the instruments
used earlier in Section 3.3 for the wage-rental ratio. We use local amenities as an instrument for
the local wage level, while we use the Bartik and BGS shocks as instruments for both wage levels
and changes. The wages we use are based on establishment data in order to match the same year
as the Economic Census.

Table C.6 contains the estimates of these dynamic panel models. The first two columns report
estimates for the unbalanced panel, the third and fourth columns for the balanced panel, and the
fifth and sixth column for the unbalanced panel estimating the coefficients using second step GMM.
The first three rows report the lag of the capital-labor ratio, the short-run elasticity, which is the
coefficient on the wage-rental rate ratio, and the long-run elasticity, which is the short run elasticity
divided by one minus the coefficient on the lag of the capital-labor ratio, across six specifications.

We start by estimating models with only the first lag of the capital-labor ratio, so ρ10 = 0.
The coefficient on the lag of the capital-labor ratio is precisely estimated and ranges from 0.28 to
0.35, indicating substantially auto-correlation even over a 5 year time horizon. The estimates of
the short run elasticity are fairly low, ranging from 0.06 to 0.22 across specifications, indicating a
long run elasticities between 0.08 and 0.31. These long run elasticities are substantially lower than
our cross-sectional estimates.

One of the main testable assumptions of the Blundell-Bond model with one lag is that there
is no correlation between εit and εit−10. We can test this by examining the correlation between
differenced residuals; while the autocorrelation is low (at about 0.045), we strongly reject the
hypothesis that there is no correlation between errors two periods apart. Thus, we also estimate
specifications including a second lag of the capital-labor ratio in the fourth through seventh rows

In Web Appendix C.4, we find that weighting by size leads to only slightly larger estimates of the elasticity,
and, as discussed in Section 3.3, estimates using multi-unit plants tend to be similar to the full sample.
Thus, we suspect that any sample selection bias is small.

7We measure the labor input at a plant as the wage bill divided by the local wage.
8Blundell-Bond uses system GMM with two equations. One moment condition is based on differencing

(C.11) and then instrumenting with lagged terms, so E [Zit−5(εit − εit−5)] = 0. The second moment con-
dition uses (C.11) directly but differences the instruments, so E [(Zit − Zit−5)εit] = 0. For example, in the
differenced equation, we would instrument for the change in the capital-labor ratio with lagged values of the
capital-labor ratio, while in the levels equation we would instrument for the lag of the capital-labor ratio with
lagged values of changes in the capital-labor ratio. We also examined estimates using the Arellano-Bond
model, which only uses the differenced equation. Unfortunately, with the Arellano-Bond model we have very
little power to estimate the capital-labor elasticity in specifications where we instrument for wages, although
we obtain similar estimates of the lagged capital-labor ratio.
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of Table C.6. The coefficient on the first lag ranges from 0.31 to 0.34. The coefficient on the second
lag is roughly one-fifth to one-fourth the magnitude of the second lag, ranging from 0.06 to 0.08,
but remains strongly significant. Thus, dynamic adjustment does occur beyond a five year time
horizon. However, the sharp reduction in the magnitude of the second lag gives us confidence that
we do not need to include additional lags of the capital-labor ratio.

The short run elasticities in the specifications with two lags of the capital-labor ratio are con-
siderably higher than those with one lag, with estimates between 0.15 and 0.36. These short run
elasticities imply long run elasticities between 0.26 and 0.61.

Apart from the estimate of 0.61, however, these long run elasticities remain slightly below most
of the estimates of the cross-sectional elasticity.

Table C.6 Dynamic Panel Estimates of the Plant Capital-Labor Substitution Elasticity

(1) (2) (3) (4) (5) (6)
No Inst All Inst No Inst All Inst No Inst All Inst

Lag 0.28 (0.003) 0.31 (0.004) 0.34 (0.004) 0.35 (0.004) 0.28 (0.007) 0.31 (0.006)
SR Elasticity 0.13 (0.05) 0.07 (0.07) 0.12 (0.05) 0.06 (0.08) 0.22 (0.12) 0.08 (0.08)
LR Elasticity 0.18 0.10 0.18 0.08 0.31 0.11
Lag 0.31 (0.004) 0.32 (0.005) 0.34 (0.004) 0.34 (0.005) 0.31 (0.008) 0.33 (0.007)
Second Lag 0.06 (0.005) 0.07 (0.005) 0.08 (0.005) 0.07 (0.006) 0.07 (0.008) 0.07 (0.007)
SR Elasticity 0.18 (0.04) 0.21 (0.09) 0.15 (0.04) 0.36 (0.14) 0.27 (0.09) 0.21 (0.08)
LR Elasticity 0.29 0.34 0.26 0.61 0.43 0.35

Balanced No No Yes Yes No No
Two Step No No No No Yes Yes

Note: The table contains six specifications. In (1) and (2), we examine an unbalanced panel of
plants in the Census of Manufactures for at least three consecutive Censuses between 1987 and 2007,
while (3) and (4) examine the balanced panel. The first four specifications use one step GMM, while
(5) and (6) use two step GMM on the unbalanced panel.

All specifications estimate the Blundell-Bond model, either assuming that the wage-rental rate
ratio is exogenous, or instrumenting for it using amenity, Bartik, and BGS instruments. Instruments
are as defined in the text. All specifications also include year effects and time trends for the 3
Digit NAICS industry reported in 1997 level as controls for biased technical change. The wage is
the average log wage for the commuting zone, computed as payroll/number of employees at the
establishment level using the LBD. The rental rate is the average rental rate between structures and
equipment, weighting each by their respective capital stock. Standard errors, in parentheses, are
clustered at the commuting zone level.

C.6 Estimates Including Spillover Wage

We examine the magnitude of spillovers from wages in nearby commuting zones by including both
the commuting zone’s own wage, and the average wage in other commuting zones in the same
state. We construct this average spillover wage by weighting the local commuting zone wage in
other commuting zones by their total manufacturing employment in our data. In Table C.7, we
display both the coefficient on the local wage and the spillover wage (so, under our baseline model,
the elasticity is one minus the coefficient on the local wage). The spillover wage effects are typically
small, with most below 10% of the local wage effect, and not statistically significantly different
from zero.
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Table C.7 Estimates of Spillover Effects

Local Wage Spillover Wage Local Wage Spillover Wage

1987 -0.57 (0.03) 0.01 (0.06) -0.5 (0.03) -0.10 (0.07)
1992 -0.45 (0.03) -0.05 (0.04) -0.62 (0.06) -0.19 (0.13)
1997 -0.62 (0.03) 0.18 (0.05) -0.47 (0.04) -0.18 (0.09)
2002 -0.48 (0.03) 0.03 (0.05) -0.51 (0.04) -0.07 (0.09)
2007 -0.69 (0.05) -0.06 (0.11) -0.39 (0.02) -0.09 (0.06)

Wage Pop Census LBD

Note: Standard errors are in parentheses. The table contains estimates of the coefficient on
the local commuting zone wage as well as the coefficient on the spillover wage, measured as the
average local wage in other commuting zones in the same state, averaged after weighting by total
manufacturing employment. All regressions include 4 digit SIC or 6 digit NAICS industry fixed
effects, age fixed effects, and a multiunit status indicator and have standard errors clustered at the
commuting zone level. Wages are based upon Population Census or LBD data, depending upon the
specification, and as defined in the text.

C.7 Estimates Using the Plant-Level Wage

In our baseline estimates, we use the local wage as the wage rate that the plant faces. In this section,
we examine the alternative of using the plant-level wage. We first show the assumptions required
for the regional wage or the plant wage to identify the elasticity. We then examine estimates using
the plant level wage in light of our theoretical results.

We write all variables in log form. We first assume that the wage the plant faces for a unit of
human capital, wPi , both reflects the local wage, wLi , and a plant specific compensating differential,
Si. The observed plant level wage, ŵPi , also includes the amount of human capital per worker, τi.
Thus, we have that:

wPi = wLi + Si

ŵPi = wPi + τi

Since we construct the local wage averaging across workers or establishments in a location, the
plant specific compensating differential should be mean zero conditional on the local wage:

E
[
Si|wLi

]
= 0

An implication of this is that the covariance of the local wage wLi and the plant compensating
differential Si should be zero: Cov

(
wLi , Si

)
= 0.

The true model for the factor cost ratio is:

yi = βwPi + εi

where yi is the factor cost ratio and β = σ − 1. For simplicity in demonstrating the differences be-
tween the plant level wage and local wage, we assume that the error term εi is i.i.d and independent
of right hand side variables and instruments.

Our baseline OLS uses the local wage. Under this setup, we have that:

Cov
(
yi, w

L
i

)
V ar

(
wLi
) = β

Cov
(
wPi , w

L
i

)
V ar

(
wLi
) = β

Cov
(
wLi + Si, w

L
i

)
V ar

(
wLi
) = β
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Thus, OLS using the local wage identifies the elasticity of substitution.
If we estimate OLS using the plant level wage, we have that:

Cov
(
yi, ŵ

P
i

)
V ar

(
ŵPi
) = β

Cov
(
wPi , ŵ

P
i

)
V ar

(
ŵPi
) = β

Cov
(
ŵPi − τ, ŵPi

)
V ar

(
ŵPi
)

= β

(
1−

Cov
(
τi, ŵ

P
i

)
V ar

(
ŵPi
) )

So long as measured wages are correlated with skill, so Cov
(
τi, ŵ

P
i

)
, which is likely, then OLS with

the plant level wage will bias estimates of β towards zero, and so biases estimates of the elasticity
σ towards one.

Next, we could instrument for the plant level wage using the local wage. (Similar issues would
apply for other instruments.) In that case, we have that:

Cov
(
yi, w

L
i

)
Cov

(
ŵPi , w

L
i

) = β
Cov

(
wPi , w

L
i

)
Cov

(
ŵPi , w

L
i

) = β
V ar

(
wLi
)

+ Cov
(
Si, w

L
i

)
V ar

(
wLi
)

+ Cov
(
S,wLi

)
+ Cov

(
τi, wLi

)
= β

V ar
(
wLi
)

V ar
(
wLi
)

+ Cov
(
τi, wLi

)
In this case, for identification of β, and so the elasticity σ, we require an additional assumption

that Cov
(
τi, w

L
i

)
= 0. That is, we need that the degree of skill at the plant is uncorrelated with the

local wage. If areas with higher wages also have workers with higher human capital, this correlation
would be positive; otherwise, it would be negative.

We then examine several specifications using the plant wage in Table C.8. Estimates using
OLS regressions with the plant wage are much higher than our baseline estimates, ranging from
0.77 to 0.94, consistent with the expected bias from the correlation of plant level skill with the
measured plant level wage. Using either local wages as instruments or our previous instruments,
we get slightly lower estimates from 1987 through 1997. These estimates range between 0.25 and
0.35 using local wages, and between 0.14 and 0.4 using all of our three sets of instruments. Slightly
lower estimates using these instruments with the plant level wage would be consistent with plants
in higher wage areas using less skilled workers on average.

However, we obtain much lower estimates for 2002 and 2007 using instruments, with estimates
between 0.01 and 0.05 using local wages and 0.13 and 0.14 using all three sets of instruments
together. Elasticity estimates are negative for some of the specifications in these years. One
explanation for the difference is that plant level wages for 2002 and 2007, unlike 1987 through
1997, included non-monetary compensation. Thus, compared to using the local wage, using the
plant level wage results in lower and more variable estimates.

In Section 3.3.2, we found that estimated elasticities of substitution were higher after including
firm fixed effects. One potential explanation for this result is that the plant level wage is less
responsive to the local market wage within multiplant firms. We examine this explanation in
Table C.9 by regressing the plant wage on the local wage for multiunit plants, and either including
or excluding firm fixed effects. We indeed find that the correlation between the local wage and
plant wage is lower after including firm fixed effects. For example, in the IV specifications, the
plant wage increases, on average, by 54% with a 100% increase in the local wage without including
firm fixed effects, compared to 48% after including firm fixed effects.
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Table C.8 Estimates of the Capital-Labor Elasticity of Substitution Using Plant-Level
Wages and Instruments

OLS Local Wage
(Pop Cen-
sus)

Local Wage
(LBD)

Amenities Bartik BGS All

1987 0.84 (0.01) 0.27 (0.07) 0.25 (0.07) 0.32 (0.10) 0.24 (0.10) 0.28 (0.10) 0.33 (0.06)
1992 0.84 (0.01) 0.35 (0.06) 0.3 (0.05) 0.5 (0.07) 0.22 (0.08) 0.28 (0.08) 0.38 (0.05)
1997 0.77 (0.01) 0.28 (0.06) 0.25 (0.06) 0.44 (0.07) 0.19 (0.18) 0.14 (0.13) 0.32 (0.06)
2002 0.94 (0.02) 0.04 (0.11) 0.01 (0.10) 0.33 (0.14) -0.47 (0.30) -0.11 (0.14) 0.14 (0.09)
2007 0.81 (0.02) 0.05 (0.10) 0.05 (0.09) 0.17 (0.13) -0.13 (0.15) 0.05 (0.11) 0.13 (0.07)

Note: Standard errors are in parentheses. The table contains estimates of the elasticity of sub-
stitution using the plant-level wage, defined as total wage bill divided by total employment. The
second column reports OLS results, wheas all other columns use an instrument: either the local
wage using Population Census based wages, the local wage using LBD based wages, the amenity
instruments, Bartik instruments, BGS instruments, or the amenity, Bartik, and BGS instruments
combined. All regressions include 4 digit SIC or 6 digit NAICS industry fixed effects, age fixed
effects, and a multiunit status indicator and have standard errors clustered at the commuting zone
level. Instruments are as defined in the text.

Table C.9 Correlation of the Plant Wage with the Local Wage for Multi-Unit Plants

Including Firm Fixed Effects Excluding Firm Fixed Effects
Year OLS OLS IV OLS OLS IV

1987 0.58 (0.03) 0.43 (0.02) 0.48 (0.03) 0.66 (0.04) 0.51 (0.02) 0.54 (0.03)
1992 0.71 (0.03) 0.53 (0.02) 0.57 (0.03) 0.86 (0.03) 0.66 (0.02) 0.70 (0.03)
1997 0.75 (0.03) 0.48 (0.02) 0.55 (0.03) 0.91 (0.03) 0.59 (0.03) 0.65 (0.03)
2002 0.66 (0.02) 0.42 (0.02) 0.45 (0.03) 0.75 (0.03) 0.49 (0.02) 0.51 (0.03)
2007 0.63 (0.03) 0.44 (0.02) 0.46 (0.03) 0.75 (0.03) 0.53 (0.02) 0.56 (0.03)

Wage Pop Census LBD LBD Pop Census LBD LBD

Note: All regressions include industry dummies and age fixed effects, and only use multiunit
plants; the first three columns include firm fixed effects, while the second three columns exclude
firm fixed effects. Instruments include amenity, Bartik, and BGS instruments. Local wages used
are the average log wage for the commuting zone. In the first and fourth columns, the local wage
is computed as wage and salary income over total number of hours worked adjusted for differences
in worker characteristics using the Population Censuses; in all other cases, the wage is computed as
payroll/number of employees at the establishment level using the LBD. The dependent variable is
the plant level wage.
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C.8 Plant Level Estimates by Industry

This section includes tables of plant capital-labor substitution elasticity estimates from Table C.10
to Table C.15.

Table C.10 Elasticities of Substitution between Labor and Capital for Two Digit SIC
Industries Using Population Census Based Wages

Industry 1987 1992 1997 N (1987)

20: Food Products 0.60 (0.06) 0.69 (0.08) 0.63 (0.09) ≈ 11,200
22: Textiles 0.58 (0.16) 0.64 (0.18) 0.39 (0.19) ≈ 3,580
23: Apparel 0.94 (0.10) 0.73 (0.05) 0.36 (0.09) ≈ 12,800
24: Lumber and Wood 0.19 (0.08) 0.47 (0.08) 0.09 (0.10) ≈ 15,500
25: Furniture 0.19 (0.10) 0.43 (0.10) -0.17 (0.20) ≈ 5,720
26: Paper 0.22 (0.10) 0.35 (0.09) 0.46 (0.10) ≈ 4,280
27: Printing and Publishing 0.45 (0.04) 0.34 (0.05) 0.26 (0.07) ≈ 27,800
28: Chemicals 0.31 (0.12) 0.26 (0.12) 0.09 (0.13) ≈ 7,040
29: Petroleum Refining 0.45 (0.18) 1.15 (0.18) 0.47 (0.23) ≈ 1,670
30: Rubber 0.45 (0.12) 0.44 (0.11) 0.23 (0.10) ≈ 8,630
31: Leather 0.70 (0.22) 0.54 (0.19) 0.45 (0.29) ≈ 1,000
32: Stone, Clay, Glass, Concrete 0.20 (0.11) 0.58 (0.11) 0.26 (0.13) ≈ 9,360
33: Primary Metal 0.40 (0.12) 0.32 (0.10) 0.21 (0.17) ≈ 4,380
34: Fabricated Metal 0.24 (0.07) 0.38 (0.07) 0.14 (0.09) ≈ 21,000
35: Machinery 0.47 (0.05) 0.47 (0.06) 0.38 (0.08) ≈ 26,100
36: Electrical Machinery 0.42 (0.10) 0.47 (0.11) 0.52 (0.11) ≈ 8,300
37: Transportation Equip 0.59 (0.13) 0.70 (0.14) 0.47 (0.12) ≈ 5,130
38: Instruments 0.61 (0.11) 0.39 (0.10) 0.41 (0.11) ≈ 4,680
39: Misc 0.33 (0.10) 0.25 (0.11) -0.00 (0.11) ≈ 6,900

Note: All regressions include 4 digit SIC industry fixed effects, age fixed effects, and a multiunit
status indicator and have standard errors clustered at the commuting zone level. Wages are based
upon Population Census data and as defined in the text.
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Table C.11 Elasticities of Substitution between Labor and Capital for Two Digit SIC
Industries Using LBD Based Wages

Industry 1987 1992 1997 N (1987)

20: Food Products 0.68 (0.05) 0.74 (0.07) 0.74 (0.07) ≈ 11,200
22: Textiles 0.68 (0.12) 0.67 (0.15) 0.52 (0.13) ≈ 3,580
23: Apparel 0.99 (0.07) 0.78 (0.05) 0.52 (0.07) ≈ 12,800
24: Lumber and Wood 0.37 (0.06) 0.47 (0.06) 0.34 (0.07) ≈ 15,500
25: Furniture 0.30 (0.08) 0.42 (0.09) 0.17 (0.13) ≈ 5,720
26: Paper 0.36 (0.08) 0.43 (0.09) 0.17 (0.13) ≈ 4,280
27: Printing and Publishing 0.51 (0.03) 0.39 (0.04) 0.44 (0.05) ≈ 27,800
28: Chemicals 0.44 (0.12) 0.29 (0.12) 0.25 (0.11) ≈ 7,040
29: Petroleum Refining 0.50 (0.15) 1.04 (0.17) 0.57 (0.18) ≈ 1,670
30: Rubber 0.53 (0.10) 0.50 (0.08) 0.45 (0.08) ≈ 8,630
31: Leather 0.80 (0.18) 0.59 (0.16) 0.53 (0.19) ≈ 1,000
32: Stone, Clay, Glass, Concrete 0.39 (0.09) 0.68 (0.09) 0.44 (0.09) ≈ 9,360
33: Primary Metal 0.58 (0.09) 0.39 (0.08) 0.44 (0.11) ≈ 4,380
34: Fabricated Metal 0.40 (0.06) 0.43 (0.06) 0.38 (0.06) ≈ 21,000
35: Machinery 0.59 (0.04) 0.57 (0.06) 0.58 (0.06) ≈ 26,100
36: Electrical Machinery 0.54 (0.09) 0.59 (0.09) 0.61 (0.07) ≈ 8,300
37: Transportation Equip 0.64 (0.10) 0.69 (0.12) 0.65 (0.09) ≈ 5,130
38: Instruments 0.60 (0.09) 0.39 (0.10) 0.54 (0.09) ≈ 4,680
39: Misc 0.40 (0.08) 0.29 (0.09) 0.24 (0.09) ≈ 6,900

Note: All regressions include 4 digit SIC industry fixed effects, age fixed effects, and a multiunit
status indicator and have standard errors clustered at the commuting zone level. Wages are based
upon LBD data and as defined in the text.
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Table C.12 Elasticities of Substitution between Labor and Capital for Two Digit SIC
Industries Using All Instruments

Industry 1987 1992 1997 N (1987)

20: Food Products 0.65 (0.06) 0.62 (0.09) 0.67 (0.09) ≈ 11,200
22: Textiles 0.64 (0.12) 0.78 (0.16) 0.47 (0.16) ≈ 3,580
23: Apparel 0.93 (0.09) 0.77 (0.05) 0.39 (0.07) ≈ 12,800
24: Lumber and Wood 0.34 (0.10) 0.53 (0.09) 0.28 (0.10) ≈ 15,500
25: Furniture 0.23 (0.08) 0.35 (0.11) 0.02 (0.20) ≈ 5,720
26: Paper 0.28 (0.10) 0.41 (0.08) 0.40 (0.10) ≈ 4,280
27: Printing and Publishing 0.52 (0.04) 0.34 (0.04) 0.37 (0.06) ≈ 27,800
28: Chemicals 0.31 (0.12) 0.18 (0.13) 0.15 (0.13) ≈ 7,040
29: Petroleum Refining 0.49 (0.19) 1.13 (0.22) 0.51 (0.23) ≈ 1,670
30: Rubber 0.50 (0.14) 0.45 (0.11) 0.39 (0.10) ≈ 8,630
31: Leather 0.68 (0.20) 0.55 (0.17) 0.66 (0.21) ≈ 1,000
32: Stone, Clay, Glass, Concrete 0.23 (0.12) 0.64 (0.13) 0.29 (0.13) ≈ 9,360
33: Primary Metal 0.49 (0.11) 0.48 (0.10) 0.29 (0.16) ≈ 4,380
34: Fabricated Metal 0.38 (0.07) 0.41 (0.07) 0.31 (0.09) ≈ 21,000
35: Machinery 0.57 (0.05) 0.54 (0.06) 0.52 (0.07) ≈ 26,100
36: Electrical Machinery 0.48 (0.11) 0.59 (0.10) 0.63 (0.09) ≈ 8,300
37: Transportation Equip 0.76 (0.14) 0.60 (0.13) 0.62 (0.12) ≈ 5,130
38: Instruments 0.63 (0.11) 0.51 (0.13) 0.47 (0.10) ≈ 4,680
39: Misc 0.33 (0.09) 0.21 (0.10) 0.17 (0.11) ≈ 6,900

Note: All regressions include 4 digit SIC industry fixed effects, age fixed effects, and a multiu-
nit status indicator and have standard errors clustered at the commuting zone level. Wages are
based upon LBD data and as defined in the text. Instruments include amenity, Bartik, and BGS
instruments together and are as defined in the text.
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Table C.13 Elasticities of Substitution between Labor and Capital for Three Digit NAICS
Industries Using Population Census Based Wages

Industry 1997 2002 2007 N (1997)

311: Food Products 0.51 (0.07) 0.69 (0.09) 0.70 (0.08) ≈ 15,000
312: Beverage 1.10 (0.36) 1.07 (0.22) 1.09 (0.27) ≈ 1,380
313: Textiles 0.35 (0.25) 0.04 (0.19) -0.14 (0.25) ≈ 2,650
314: Textile Products 0.23 (0.13) -0.02 (0.20) 0.70 (0.14) ≈ 4,130
315: Apparel 0.34 (0.10) 0.23 (0.17) 0.42 (0.16) ≈ 10,200
316: Leather 0.44 (0.28) 0.63 (0.31) 0.78 (0.44) ≈ 914
321: Wood Products 0.09 (0.10) -0.38 (0.15) -0.04 (0.08) ≈ 11,000
322: Paper 0.38 (0.11) 0.37 (0.12) 0.52 (0.15) ≈ 4,420
323: Printing 0.26 (0.07) 0.50 (0.08) 0.61 (0.06) ≈ 23,900
324: Petroleum Refining 0.47 (0.23) 0.33 (0.24) 0.42 (0.21) ≈ 1,620
325: Chemicals 0.12 (0.13) 0.08 (0.14) 0.06 (0.14) ≈ 8,370
326: Rubber 0.26 (0.10) 0.39 (0.11) 0.19 (0.10) ≈ 11,300
327: Stone, Clay, Glass, Concrete 0.25 (0.13) 0.00 (0.13) 0.39 (0.11) ≈ 10,600
331: Primary Metal 0.31 (0.16) 0.19 (0.17) 0.44 (0.22) ≈ 3,560
332: Fabricated Metal 0.33 (0.07) 0.45 (0.10) 0.45 (0.06) ≈ 37,700
333: Machinery 0.16 (0.11) 0.15 (0.09) 0.43 (0.08) ≈ 18,500
334: Computers 0.50 (0.10) 0.50 (0.14) 0.44 (0.12) ≈ 9,230
335: Electrical Equip 0.28 (0.18) 0.25 (0.19) 0.57 (0.18) ≈ 4,080
336: Transportation Equip 0.45 (0.11) 0.44 (0.17) 0.21 (0.15) ≈ 7,030
337: Furniture -0.02 (0.15) 0.11 (0.15) 0.49 (0.11) ≈ 10,300
339: Misc 0.15 (0.09) 0.21 (0.10) 0.62 (0.06) ≈ 12,500

Note: All regressions include 6 digit NAICS industry fixed effects, age fixed effects, and a multiunit
status indicator and have standard errors clustered at the commuting zone level. Wages are based
upon Population Census data and as defined in the text.
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Table C.14 Elasticities of Substitution between Labor and Capital for Three Digit NAICS
Industries Using LBD Based Wages

Industry 1997 2002 2007 N (1997)

311: Food Products 0.64 (0.05) 0.75 (0.06) 0.76 (0.06) ≈ 15,000
312: Beverage 1.14 (0.25) 1.07 (0.17) 1.11 (0.22) ≈ 1,380
313: Textiles 0.52 (0.18) 0.23 (0.14) 0.12 (0.20) ≈ 2,650
314: Textile Products 0.38 (0.10) 0.24 (0.15) 0.76 (0.12) ≈ 4,130
315: Apparel 0.55 (0.09) 0.44 (0.13) 0.59 (0.13) ≈ 10,200
316: Leather 0.52 (0.19) 0.70 (0.24) 0.90 (0.32) ≈ 914
321: Wood Products 0.38 (0.08) 0.06 (0.10) 0.28 (0.07) ≈ 11,000
322: Paper 0.58 (0.08) 0.55 (0.09) 0.64 (0.11) ≈ 4,420
323: Printing 0.43 (0.05) 0.60 (0.06) 0.67 (0.04) ≈ 23,900
324: Petroleum Refining 0.57 (0.18) 0.37 (0.18) 0.69 (0.16) ≈ 1,620
325: Chemicals 0.29 (0.10) 0.23 (0.10) 0.24 (0.12) ≈ 8,370
326: Rubber 0.47 (0.08) 0.54 (0.08) 0.40 (0.07) ≈ 11,300
327: Stone, Clay, Glass, Concrete 0.44 (0.09) 0.31 (0.09) 0.60 (0.08) ≈ 10,600
331: Primary Metal 0.48 (0.11) 0.36 (0.11) 0.49 (0.15) ≈ 3,560
332: Fabricated Metal 0.50 (0.05) 0.59 (0.07) 0.57 (0.05) ≈ 37,700
333: Machinery 0.49 (0.08) 0.41 (0.06) 0.59 (0.06) ≈ 18,500
334: Computers 0.57 (0.08) 0.60 (0.11) 0.56 (0.10) ≈ 9,230
335: Electrical Equip 0.51 (0.12) 0.43 (0.14) 0.66 (0.15) ≈ 4,080
336: Transportation Equip 0.63 (0.08) 0.59 (0.11) 0.44 (0.10) ≈ 7,030
337: Furniture 0.25 (0.09) 0.30 (0.11) 0.55 (0.09) ≈ 10,300
339: Misc 0.35 (0.07) 0.44 (0.09) 0.68 (0.05) ≈ 12,500

Note: All regressions include 6 digit NAICS industry fixed effects, age fixed effects, and a multiunit
status indicator and have standard errors clustered at the commuting zone level. Wages are based
upon LBD data and as defined in the text.
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Table C.15 Elasticities of Substitution between Labor and Capital for Three Digit NAICS
Industries Using All Instruments

Industry 1997 2002 2007 N (1997)

311: Food Products 0.59 (0.07) 0.74 (0.09) 0.71 (0.07) ≈ 15,000
312: Beverage 0.87 (0.35) 0.86 (0.23) 1.2 (0.25) ≈ 1,380
313: Textiles 0.35 (0.20) 0.15 (0.17) 0.06 (0.23) ≈ 2,650
314: Textile Products 0.18 (0.12) 0.20 (0.17) 0.66 (0.14) ≈ 4,130
315: Apparel 0.44 (0.09) 0.40 (0.16) 0.52 (0.16) ≈ 10,200
316: Leather 0.60 (0.20) 0.51 (0.29) 0.84 (0.38) ≈ 914
321: Wood Products 0.36 (0.12) -0.09 (0.15) 0.24 (0.08) ≈ 11,000
322: Paper 0.36 (0.11) 0.53 (0.12) 0.63 (0.14) ≈ 4,420
323: Printing 0.37 (0.06) 0.60 (0.07) 0.69 (0.05) ≈ 23,900
324: Petroleum Refining 0.50 (0.23) 0.21 (0.27) 0.75 (0.22) ≈ 1,620
325: Chemicals 0.21 (0.12) 0.13 (0.13) 0.28 (0.14) ≈ 8,370
326: Rubber 0.40 (0.11) 0.41 (0.10) 0.29 (0.09) ≈ 11,300
327: Stone, Clay, Glass, Concrete 0.29 (0.13) 0.32 (0.13) 0.58 (0.11) ≈ 10,600
331: Primary Metal 0.32 (0.15) 0.13 (0.13) 0.58 (0.11) ≈ 3,560
332: Fabricated Metal 0.46 (0.06) 0.57 (0.09) 0.52 (0.05) ≈ 37,700
333: Machinery 0.40 (0.10) 0.31 (0.08) 0.54 (0.07) ≈ 18,500
334: Computers 0.54 (0.10) 0.63 (0.12) 0.55 (0.11) ≈ 9,230
335: Electrical Equip 0.57 (0.14) 0.26 (0.17) 0.60 (0.19) ≈ 4,080
336: Transportation Equip 0.61 (0.12) 0.44 (0.14) 0.33 (0.12) ≈ 7,030
337: Furniture 0.11 (0.14) 0.16 (0.14) 0.52 (0.10) ≈ 10,300
339: Misc 0.27 (0.09) 0.39 (0.11) 0.62 (0.06) ≈ 12,500

Note: All regressions include 6 digit NAICS industry fixed effects, age fixed effects, and a mul-
tiunit status indicator and have standard errors clustered at the commuting zone level. Wages are
based upon LBD data and as defined in the text. Instruments include amenity, Bartik, and BGS
instruments together and are as defined in the text.
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D Other Components for the Aggregation Framework

D.1 Estimates of Heterogeneity Index

In this section, we examine relationship between the variability in the capital share and the het-
erogeneity index χ. To do so, we model the capital cost to labor cost ratio rK

wL as distributed with
a lognormal distribution. We first calibrate this lognormal distribution to the US plant level data,
and then examine how the capital share distribution has to change for much larger estimates of χ.
We assume that all simulated plants have the same size, so the cost share weights are equal across
plants.

The lognormal distribution has two parameters – the mean of the logarithm µ, and the standard
deviation of the logarithm σ. We calibrate µ so that the median capital share is 0.25. For σ, we
use estimates of the median 75/25 ratio and 90/10 ratio of rK

wL across 4 digit SIC industries in
1987 reported in Raval (2019), and calibrate σ to match either moment. The median 75/25 ratio
in 1987 for rK

wL is 2.1, and the median 90/10 ratio is 5.7. Using 100,000 simulation draws, we find
that calibrating to the 75/25 ratio results in a χ value of 0.054, and calibrating to the 90/10 ratio
results in a χ value of 0.08. These estimates are within the range of estimates of χ reported in
Section 3.2, although lower than the average value of χ. However, they should be slightly smaller
as they reflect differences within 4 digit industries rather than 2 digit industries, and capital shares
are more disperse within 2 digit industries.

We then calibrate the lognormal distribution to match values of χ of 0.2, 0.3, and 0.4. Figure D.1
depicts the distribution of capital shares for both the χ values of 0.054 and 0.08, which match the
Census data, as well as the larger χ values. In order to rationalize a larger χ value, we would need
to have a much larger share of plants with extremely low and extremely high capital shares. For
example, given a value of χ of 0.08, 10% of capital shares are above 0.44 and 10% of capital shares
are below 12%. For a value of χ of 0.2, 10% of capital shares are above 0.6 and 10% below 0.07;
for a value of χ of 0.4, 10% of capital shares are above 0.83 and 10% of capital shares are below
0.02. For a value of χ of 0.2, the 90-10 ratio for the capital cost to labor cost ratio would be 20;
for a value of χ of 0.3 the 90-10 ratio would be 60; for a value of χ of 0.4 the 90-10 ratio would be
212. Thus, we would need much more dispersion in capital shares than we see in the US data in
order to have values of χ substantially above what we report in Figure 1a.

D.2 Demand Elasticity Estimates

We report tables of plant demand elasticity estimates using our baseline strategy of inverting the
average markup across plants in Table D.1 and Table D.2.
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Figure D.1 Distribution of Capital Shares for Different Values of χ

Note: Each curve depicts the distribution of capital shares calibrated for a given value of χ,
assuming that the capital cost to labor cost ratio is log normally distributed and the mean capital
share is 0.25.

Table D.1 Elasticities of Demand for Two Digit SIC Industries

Industry 1987 1992 1997 N (1987)

20: Food Products 4.79 (0.06) 4.29 (0.06) 3.48 (0.08) ≈ 11,200
22: Textiles 7.42 (0.21) 5.74 (0.17) 5.48 (0.13) ≈ 3,580
23: Apparel 3.94 (0.04) 3.67 (0.05) 3.75 (0.04) ≈ 12,800
24: Lumber and Wood 6.60 (0.12) 4.99 (0.08) 5.52 (0.05) ≈ 15,500
25: Furniture 4.48 (0.05) 4.07 (0.08) 4.18 (0.06) ≈ 5,720
26: Paper 6.96 (0.13) 5.81 (0.09) 5.11 (0.08) ≈ 4,280
27: Printing and Publishing 3.44 (0.02) 3.14 (0.02) 3.91 (0.03) ≈ 27,800
28: Chemicals 3.58 (0.06) 3.21 (0.04) 2.93 (0.04) ≈ 7,040
29: Petroleum Refining 5.62 (0.23) 5.55 (0.20) 3.60 (1.05) ≈ 1,670
30: Rubber 5.39 (0.07) 4.33 (0.05) 4.16 (0.04) ≈ 8,630
31: Leather 4.28 (0.12) 3.84 (0.14) 3.72 (0.12) ≈ 1,000
32: Stone, Clay, Glass, Concrete 6.16 (0.09) 5.35 (0.07) 4.09 (0.06) ≈ 9,360
33: Primary Metal 7.32 (0.21) 5.44 (0.13) 4.04 (0.07) ≈ 4,380
34: Fabricated Metal 4.79 (0.04) 4.37 (0.04) 3.85 (0.03) ≈ 21,000
35: Machinery 4.24 (0.03) 4.08 (0.07) 3.96 (0.02) ≈ 26,100
36: Electrical Machinery 3.89 (0.04) 3.65 (0.03) 3.45 (0.04) ≈ 8,300
37: Transportation Equip 5.12 (0.18) 4.87 (0.09) 4.55 (0.07) ≈ 5,130
38: Instruments 3.20 (0.04) 2.94 (0.03) 3.00 (0.03) ≈ 4,680
39: Misc 4.08 (0.04) 3.68 (0.04) 3.48 (0.04) ≈ 6,900

Note: All estimates are based upon inverting the average markup across plants in an industry;
the markup over marginal cost is equal to ε

ε−1 . We define the markup as sales divided by the sum
of costs from capital, labor, and materials.
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Table D.2 Elasticities of Demand for Three Digit NAICS Industries

Industry 1997 2002 2007 N (1997)

311: Food Products 3.52 (0.05) 3.06 (0.04) 2.76 (0.04) ≈ 15,000
312: Beverage 3.10 (0.32) 2.79 (0.07) 2.68 (0.06) ≈ 1,380
313: Textiles 5.42 (0.15) 5.86 (0.21) 4.40 (0.18) ≈ 2,650
314: Textile Products 4.52 (0.09) 4.30 (0.09) 3.50 (0.06) ≈ 4,130
315: Apparel 3.58 (0.05) 3.46 (0.06) 3.02 (0.04) ≈ 10,200
316: Leather 3.69 (0.12) 3.64 (0.12) 3.85 (0.14) ≈ 914
321: Wood Products 5.93 (0.06) 5.00 (0.08) 4.54 (0.08) ≈ 11,000
322: Paper 5.06 (0.08) 4.85 (0.08) 4.22 (0.09) ≈ 4,420
323: Printing 3.92 (0.03) 3.48 (0.02) 3.45 (0.03) ≈ 23,900
324: Petroleum Refining 3.60 (1.05) 4.35 (0.19) 3.22 (0.17) ≈ 1,620
325: Chemicals 2.96 (0.04) 2.79 (0.04) 2.55 (0.04) ≈ 8,370
326: Rubber 4.28 (0.04) 3.99 (0.04) 3.86 (0.04) ≈ 11,300
327: Stone, Clay, Glass, Concrete 4.10 (0.06) 3.56 (0.04) 3.08 (0.04) ≈ 10,600
331: Primary Metal 4.28 (0.09) 4.29 (0.11) 3.33 (0.16) ≈ 3,560
332: Fabricated Metal 3.83 (0.02) 3.61 (0.02) 3.14 (0.02) ≈ 37,700
333: Machinery 4.00 (0.03) 3.84 (0.03) 3.50 (0.03) ≈ 18,500
334: Computers 3.39 (0.03) 3.59 (0.04) 3.07 (0.03) ≈ 9,230
335: Electrical Equip 3.36 (0.07) 3.41 (0.06) 3.14 (0.05) ≈ 4,080
336: Transportation Equip 4.60 (0.07) 4.29 (0.07) 4.09 (0.07) ≈ 7,030
337: Furniture 4.44 (0.05) 3.75 (0.03) 3.56 (0.03) ≈ 10,300
339: Misc 3.13 (0.02) 3.22 (0.02) 3.03 (0.02) ≈ 12,500

Note: All estimates are based upon inverting the average markup across plants in an industry;
the markup over marginal cost is equal to ε

ε−1 . We define the markup as sales divided by the sum
of costs from capital, labor, and materials.
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D.3 Elasticity of Demand and Returns to Scale

Our baseline strategy to estimate the demand elasticity is to invert the average markup. For several
homogeneous products, the US Census of Manufactures collects both price and physical quantity
data. For these industries, we can use an approach similar to Foster et al. (2008) and estimate the
elasticity of demand by regressing quantity on price, instrumenting for price using average cost.
Given these demand estimates, the average industry-level capital-labor elasticity of substitution
is 0.44 among these industries, close to the estimate of 0.50 using our baseline strategy for the
same industries.9 See Web Appendix B.5 for details of the data construction. The trade literature
finds estimates in the same range as our baseline estimates using within industry variation across
imported varieties to identify the elasticity of demand. For example, Imbs and Mejean (2015) find
a median elasticity of 4.1 across manufacturing industries.

In an environment with arbitrary demand elasticities and imperfect pass-through of marginal
cost, the formula for the industry elasticity in Proposition 1 is unchanged except the elasticity of
demand εn is replaced by a weighted average of the quantity bniεni; εni is i’s local demand elasticity
and bni is i’s local rate of relative pass-through (the elasticity of its price to a change in marginal
cost). We show this in Web Appendix G.2.3 where we only restrict the demand system to be
homothetic. Under Dixit-Stiglitz preferences, bni = 1 and εni = εn for each i. Here, however, if a
plant passes through only three-quarters of a marginal cost increase, then the subsequent change
in scale would be three-quarters as large. Given a pass-through rate of three-quarters, our estimate
of the 1987 aggregate elasticity of substitution would be 0.66, compared to 0.72 at baseline.

Our baseline estimation assumed that each plant produced using a production function with
constant returns to scale. Alternatively, we can assume that plant i produces using the production
function:

Yni = Fni(Kni, Lni,Mni) = Gni(Kni, Lni,Mni)
γ

where Gni has constant returns to scale and γ < εn
εn−1 . Relative to the baseline, two things change,

as shown in Web Appendix G.2.2. First, the industry elasticity of substitution becomes

σNn = (1− χn)σ̄n + χn
[
s̄Mn ζ̄n + (1− s̄Mn )xn

]
where xn is defined to satisfy xn

xn−1 = 1
γ

εn
εn−1 . Thus the scale elasticity is a composite of two

parameters, the elasticity of demand and the returns to scale. When the wage falls, the amount a
labor-intensive plant would expand depends on both.

Second, when we divide a plant’s revenue by total cost, we no longer recover the markup.
Instead, we get

PniYni
rKni + wLni + qMni

=
1

γ

εn
εn − 1

=
xn

xn − 1

Fortunately, this means that the procedure we used in the baseline delivers the correct aggregate
elasticity of substitution even if we mis-specify the returns to scale. To see this, when we assumed
constant returns to scale, we found the elasticity of demand by computing PniYni

PniYni−(rKni+wLni+qMni)
.

With alternative returns to scale, this would no longer give the elasticity of demand, εn; rather, it
gives the correct scale elasticity, xn.

9Foster et al. (2008) instrument for price using plant-level TFP. We cannot use their estimates directly
because they assume plants produce using homogeneous Cobb-Douglas production functions. Because we
maintain the assumption of constant returns to scale, the appropriate analogue to plant-level TFP is average
cost. Directly using the demand elasticities of Foster et al. (2008) would yield an average industry-level
elasticity of substitution of 0.46.
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D.4 Local Content of Materials

In our baseline estimates of the elasticity of substitution between materials and non-materials, ζ,
we assume that the local wage does not affect the materials price the plant faces. As a robustness
check, we examine how sensitive our estimates are to correlation between materials prices and
local wages due to local content of materials. The local wage would affect labor costs for locally
sourced materials. We use the 1993 Commodity Flow Survey to construct the local content of
shipments for every industry included in the survey, defining local as a shipment within 100 miles
of the originating factory. We then use the 1992 Input-Output tables to construct the average local
content of materials for every manufacturing industry. Assuming that every input industry has
the same materials and labor shares and fraction of local content of materials, the elasticity of the
materials price with respect to the wage is:

d log qi
d logw

= (1− αn)
1− sMn ln

1− (1− sMn )ln

where ln is the measure of local content for industry n.
We therefore estimate ζ using the regression

log
rKnic + wLnic

qMnic
= (1− ζ)

(1− αnic)
(1− αn) 1−sMn l

1−(1−sMn )ln

(logwc) + γXnic + εnic

We find only slightly lower estimates in estimated elasticities after accounting for the local
content of materials. Our estimate of this elasticity accounting for local content of materials are
1.01 in 1987 and 0.80 in 1992 using worker based wages, compared to 1.03 in 1987 and 0.83 in 1992
under our baseline estimates.

D.5 Cross Industry Demand Elasticity

The cross industry elasticity of demand characterizes how industry-level demand responds to a
change in the overall industry price level. To estimate this elasticity, we use panel data on quantity
and price at the industry level from the NBER productivity database from 1962 to 2009.

Since least squares estimates conflate demand and supply, we have to instrument for price
using supply side instruments that capture industry productivity. The two instruments that we
examine are the average product of labor, defined as the amount of output produced per worker,
and the average real cost per unit of output produced, which is the appropriate measure of industry
productivity in our model. We thus have the following regression specification:

log qn,t = −η log pn,t + αn + βt + CONTROLS + εn

where qn,t is quantity produced for industry n in period t, pn,t is the price for industry n in period
t, αn are a set of industry fixed effects, and βt are a set of time fixed effects.

We then examine the cross industry demand elasticity, defining industry at both the four digit
and two digit SIC levels. We have 459 four digit industries and 20 two digit industries.10 For each

10Since the underlying data is at the four digit industry level, we develop two digit SIC prices and quantities
using a Fisher ideal index with base year 1987. We also exclude eight 4 digit industries which disappear
because they are excluded after the Census shifts to NAICS basis manufacturing, the most prominent of
which is Newspaper Publishing.
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industry definition, we develop specifications with extra sets of controls to account for potential
trends over time that could be correlated with changes in prices. In the four digit specifications,
these extra controls include either 2 digit industry-year fixed effects, or 4 digit industry linear
trends. In the two digit specifications, these extra controls include 2 digit industry linear trends.

Table D.3 below contains these estimates, as well as the OLS estimate. As would be expected
from simultaneity bias, OLS estimates are lower in magnitude than IV estimates. The IV estimates
using four digit industries range between 1.2 and 2.2 and are slightly above estimates using two
digit industries. This pattern is consistent with two digit industry varieties being less substitutable
than four digit industry varieties.

The two digit industry IV estimates range from 0.75 to 1.15, with three of the four estimates
close to one. Because we define industries in our aggregation analysis at the two digit level, the two
digit industry estimates are more appropriate. We thus set the cross industry demand elasticity to
one. Our results are not extremely sensitive to this elasticity; increasing the elasticity from 1 to
1.5 would increase the US aggregate elasticity by about 0.01.

Table D.3 Cross Industry Elasticity of Demand for the Manufacturing Sector

Industry Definition:
Instrument Four Digit Two Digit

None 0.99
(0.02)

1.06
(0.01)

0.57
(0.02)

0.91
(0.03)

0.37
(0.05)

APL 1.30
(0.01)

1.28
(0.01)

2.12
(0.03)

1.14
(0.04)

1.05
(0.06)

Avg Cost 1.19
(0.01)

1.22
(0.01)

1.58
(0.02)

1.04
(0.03)

0.77
(0.05)

Industry-Year Controls None Two
Digit FE

Four
Digit
Trends

None Two
Digit
Trends

Note: Standard errors are in parentheses. The first row contains coefficients from OLS regressions,
while the second and third row are IV regressions with either the average product of labor or average
real cost per unit produced as instruments. The first three columns are on four digit SIC industries;
all regressions contain four digit SIC industry and year fixed effects. The second column also includes
two digit industry-year fixed effects and the third column also includes four digit industry linear time
trends. The last two columns are on two digit SIC industries; all regressions contain two digit SIC
industry and year fixed effects. The last column also includes two digit industry linear time trends.

E Aggregation

E.1 Aggregate US Elasticity

In the body of the paper, we restrict our analysis to the manufacturing sector because, for the
US, we only have micro data on capital and labor for manufacturing. However, in this section, we
demonstrate how our approach could be used to estimate the aggregate US elasticity. We apply
our framework to an economy with two sectors – manufacturing and services. The two papers that
estimate the capital-labor substitution elasticity for services – Alvarez-Cuadrado et al. (2018) and
Herrendorf et al. (2015) – do so in a value added framework, so we apply our framework without
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materials. In that case, we need to know three elasticities - the capital-labor substitution elasticities
for services and manufacturing, and the elasticity between the services and manufacturing sectors.

Alvarez-Cuadrado et al. (2018) calibrate their model using a services-manufacturing elasticity
of either 0 or 0.5, while Herrendorf et al. (2013), a companion paper to Herrendorf et al. (2015),
estimate a services-manufacturing elasticity close to zero under a sectoral value added framework.
Thus, we examine the aggregate elasticity using the estimates from both papers and a services-
manufacturing elasticity of 0 and 0.5. We use 1997 KLEMS data provided by Dale Jorgenson
(Jorgenson, 2008) to construct value added shares and the cross-sector capital share variance.

Table E.1 contains the estimates of the aggregate elasticity under these assumptions. Because
the differences in capital shares between manufacturing and services are quite small, our estimates
are very insensitive to the cross sector elasticity. The capital share for manufacturing is 0.35,
compared to 0.36 for services, so the cross industry weight is 0.0001. The aggregate elasticity is
thus very close to the average sector elasticity weighting sectors by value added. This approach
results in an aggregate elasticity of 0.62 using the estimates of Alvarez-Cuadrado et al. (2018),
and 0.76 using the estimates of Herrendorf et al. (2015). Since both papers estimate sector level
elasticities less than one for manufacturing and services, the aggregate elasticity remains less than
one.

Table E.1 Estimates of the Aggregate US Elasticity of Substitution

Paper Manufacturing
Elasticity

Services Elastic-
ity

Cross Sector
Elasticity

Aggregate Elas-
ticity

Alvarez-Cuadrado et al. (2018) 0.77 0.57 0 0.62
Alvarez-Cuadrado et al. (2018) 0.88 0.53 0.5 0.62
Herrendorf et al. (2015) 0.8 0.75 0 0.76
Herrendorf et al. (2015) 0.8 0.75 0.5 0.76

Note: We take the capital-labor manufacturing and services elasticities from the respective pa-
pers, and construct the aggregate elasticity using sector level data on capital and labor costs from
Jorgenson (2008) with the same definitions of manufacturing and services as Alvarez-Cuadrado et
al. (2018), and use 1997 data to estimate the cross-industry weight and value added shares.

E.2 Aggregation of Micro Data

We now compare our methodology to an approach that would aggregate the data to industry or
sector level for each local area, and then estimate the elasticity using cross-sectional variation on
the aggregated data. This approach was used in the past to estimate the capital-labor elasticity
(Lucas, 1969). However, as Lucas (1969) points out, the old cross-sectional literature suffered from
a number of problems, including differences in industry composition across areas.

We thus examine aggregation at three different levels across commuting zones: at the manufac-
turing sector level, at the 2 digit SIC / 3 digit NAICS level, and at the 4 digit SIC / 6 digit NAICS
level. Because both commuting zones and industries vary substantially in their degree of economic
activity, we examine specifications that weight the data by value added as well as unweighted
specifications.

Table E.2 contains the results of these specifications. At the manufacturing and 2/3 digit
industry level, the estimates vary substantially by weighting procedure. The estimates are above
one for the manufacturing sector level unweighted, while they are negative or close to zero after
weighting using value added. At the 2/3 digit level, the estimates remain much higher in the
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unweighted specifications than the weighted specifications, although the difference is not as stark
as at the manufacturing sector level. In both cases, the unweighted elasticities are substantially
higher than our baseline industry level estimates, contained in the second column of Table E.2,
while the weighted elasticities are substantially lower than our baseline industry level estimates.

At the 4 or 6 digit industry level, however, estimates of the elasticity of substitution for the
unweighted and weighted estimates are fairly similar both to each other and to our baseline industry
level estimates. Our baseline industry level estimates range between 0.5 and 0.7 across years,
compared to between 0.45 and 0.7 across years for the estimates aggregating to the 4/6 digit industry
level. Thus, differences in industry composition likely biased the more aggregated estimates. In
addition, the fact that the estimates aggregated to the 4/6 digit level matched the estimates from
our aggregation framework provides confidence in our theory of aggregation.

Table E.2 Cross-Sectional Aggregation Estimates of the Capital-Labor Substitution
Elasticity

None Manufacturing 2/3 Digit 4/6 Digit

1987 0.68 1.27 (0.20) -0.45 (0.29) 0.94 (0.07) 0.21 (0.17) 0.60 (0.04) 0.64 (0.07)
1992 0.67 1.62 (0.21) -0.38 (0.27) 1.16 (0.07) 0.22 (0.16) 0.70 (0.04) 0.54 (0.08)
1997 0.51 1.23 (0.23) -0.08 (0.23) 1.04 (0.08) 0.22 (0.17) 0.63 (0.05) 0.59 (0.10)
2002 0.52 1.40 (0.22) 0.01 (0.18) 0.93 (0.09) 0.14 (0.16) 0.68 (0.06) 0.69 (0.04)
2007 0.53 1.08 (0.21) 0.00 (0.21) 0.63 (0.07) 0.04 (0.14) 0.46 (0.04) 0.45 (0.10)

Weight NA None Value Added None Value Added None Value Added

Note: Standard errors are in parentheses. The table contains seven specifications. The second
column is the average industry level elasticity using cost share weights based upon our aggregation
framework, and allowing all elasticities to vary by year. The third and fourth columns estimate the
elasticity of substitution after aggregating the data to the manufacturing sector level. The fifth and
sixth columns estimate the elasticity of substitution after aggregating the data to the 2 digit SIC or
3 digit NAICS industry level. The sixth and seventh columns estimate the elasticity of substitution
after aggregating the data to the 4 digit SIC or 6 digit NAICS industry level. For each level of
aggregation, we either estimate the specification unweighted or weighted by total value added.

All regressions include industry fixed effects, where applicable. Wages used are the average
log wage for the commuting zone, computed as wage and salary income over total number of hours
worked adjusted for differences in worker characteristics. Standard errors are clustered at the com-
muting zone level.

E.3 Aggregate Time Series Approaches

We now compare our methodology to the approach that jointly estimates the aggregate capital-
labor elasticity of substitution and bias of technical change using aggregate time series data. This
approach uses the following econometric model:

sv,L

1− sv,L
= β0 + (σagg − 1) log

r

w
+ log φ+ ε (E.1)

where d log φ is the bias of technical change and ε is interpreted as measurement error that is
orthogonal to log r

w . It is well known that estimates depend critically on what assumptions are
placed on the bias of technical change. We examine different assumptions on the bias of technical
change on data aggregated to the manufacturing sector level for 1970 to 2010 from the NBER
Productivity Database.
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Under an assumption of Hicks neutral technical change (d log φ = 0), the aggregate elasticity
is precisely estimated at 1.91. The elasticity is considerably above one because the labor share fell
and wages rose relative to capital prices during the sample period.

Once we allow for biased technical change, however, estimates of both the bias and aggregate
elasticity become imprecise, as shown in Figure E.1. The first way we introduce biased technical
change is through a constant rate of biased technical change (d log φ is constant). This constant
rate of bias becomes a time trend in the aggregate regression. The elasticity is then identified by
movements in relative factor prices around the trend; short run movements in factor prices are
assumed to be uncorrelated with movements in technology. Given a constant bias, the estimate of
the aggregate elasticity using least squares regressions is 0.56; the 95 percent confidence interval
ranges from 0.05 to 1.07.

Our evidence for a rising rate of biased technical change over time motivates the use of a
more flexible specification for the bias. We use a Box–Cox transformation of the time trend, as in
Klump et al. (2007), which allows the bias to vary monotonically over time.11 With the Box–Cox
specification, the aggregate elasticity is 0.69, close to our baseline estimates. Again, the range of
the confidence interval is large.

Each methodology provides a measure of the contribution of the bias of technical change to the
decline in the labor share, depicted in Figure E.1.12 Assuming a constant rate of biased technical
change, the average contribution of bias is about −0.5 percentage points per year and is larger than
our average contribution. More importantly, this average misses the timing of the large changes in
the contribution of bias over time. The Box-Cox specification implies that the contribution of bias
to the labor share has accelerated over time, but does not display the sharp drop at 2000 that the
bias estimates from our method have.

E.4 Capital Prices and the Cross-Country Approach

Karabarbounis and Neiman (2014) take an alternative approach to estimating a long-run aggregate
elasticity of capital-labor substitution by studying how long-run changes in factor prices alter
capital shares for a panel of countries. Using this approach, they find a country-level elasticity of
substitution of 1.25, which is notably larger than one. This estimate is not directly comparable to
ours because the data differ in terms of sectoral coverage, countries, and time period. Nevertheless,
we believe it would be instructive to compare the two approaches.

One can recover the capital-labor elasticity of substitution σ by estimating multiple different
first order conditions. Consider the three regressions that use different combinations of FOCs below:

ln
rK

wL
= α0 + (σ − 1) ln

w

r
+ (σ − 1) ln

A

B
(E.2)

ln
rK

PY
= α0 + (1− σ) ln

r

P
+ (σ − 1) lnA (E.3)

ln
wL

PY
= α0 + (1− σ) ln

w

P
+ (σ − 1) lnB (E.4)

If the technology term is treated as a residual, using OLS to estimate σ requires respectively three
different orthogonality assumptions: ln w

r ⊥ ln A
B , ln r ⊥ lnA, and lnw ⊥ lnB.

11The Box–Cox transformation implies that d log φ = γtλ; λ allows the rate of biased technical change to
vary over time.

12For the aggregate time series method, the contribution of bias is sv,L(1− sv,L)d log φ; thus, the contri-
bution to the labor share can vary over time even if the bias is constant.
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Figure E.1 Elasticity and Bias Estimates from Aggregate Data

Note: The left plot displays the point estimate and 95 percent confidence interval for the aggregate
elasticity of substitution from regressions based on (E.1). Specifications differ in assumptions on the
bias of technical change. Technical change is respectively assumed to have no trend, follow a linear
time trend, or follow a Box–Cox transformation of the time trend. The right plot displays the
contribution to the labor share from the bias of technical change, from either aggregate regressions
with a linear or Box-Cox specification of the time trend or from our method that estimates the
aggregate elasticity from the micro data.

Karabarbounis and Neiman (2014) estimate the elasticity using changes in the representative
firm’s first order condition for capital (E.3), using cross-country variation in capital price changes.
They examine two different identifying assumptions. First, they assume that technology is purely
labor-augmenting, i.e. d lnA = 0, arguing that this would be required on a balanced growth path.
Second, they assume that technical change is purely Hicks neutral, in which case they can measure
d lnA directly because it is equal to the change in TFP.

Relative to the approaches that estimate aggregate elasticities using the aggregate time series,
Karabarbounis and Neiman (2014) take a step forward by using a panel of countries and focusing
on long-run variation. However, we believe that the assumptions that technical change has been
either purely labor-augmenting or purely Hicks-neutral are overly restrictive, especially in a time
when factor shares have been changing. This is especially clear once one recognizes that changes
in the capital- and labor-augmenting productivity residuals (A and B) capture many things that
are not purely technological in nature such as shifts in composition due to structural change or
offshoring, or from a myriad of other changes. For example, as Mutreja et al. (2018) show, most
countries import almost all of their capital goods, so much of the variation within countries may
follow trade liberalizations. However, trade liberalizations often occur alongside other reforms.
Changes in trade barriers or these other reforms can affect capital shares for multiple reasons other
than simply shifting capital prices, which would bias any estimates of the elasticity.

Estimates of the elasticity using OLS can differ when using each of the three FOCs. A natural
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interpretation is that factor prices are correlated with technology, and the different regressions
require different orthogonality restrictions. In contrast, if one has an instrument for factor prices
that is orthogonal to A and B, one can sidestep these issues completely. We use the combined
labor and capital first order condition (E.2) because we have variation in wages in the cross-section
across locations that is plausibly orthogonal to the bias of technology. An alternative approach to
estimate the elasticity would be to use differences in the cost of capital across firms or industries.
Multiple papers that use plausibly exogenous variation in the cost of capital, and the capital first
order condition, find similar estimates of the micro elasticity to our work using wage differences
and the labor and capital first order conditions. We summarize these results in Section 4.1.

F Labor Share Decomposition

F.1 Discrete Approximation

This section shows the discrete approximation we use to approximate (16). For any x, define

x̄ =
xt+1 + xt

2

∆x =
xt+1 − xt

x̄

This means that for any x, y, we have

∆ (x+ y) =
xt+1 + yt+1 − xt − yt

x̄+ ȳ
=

x̄

x̄+ ȳ
∆x+

ȳ

x̄+ ȳ
∆y

∆ (x− y) =
xt+1 − yt+1 − xt + yt

x̄− ȳ
=

x̄

x̄− ȳ
∆x− ȳ

x̄− ȳ
∆y

Two useful relationships are:

∆
(
sv,K + sv,L

)
=

s̄v,K

s̄v,K + s̄v,L
∆sv,K +

s̄v,L

s̄v,K + s̄v,L
∆sv,L

(1− s̄v,π) ∆ (1− sv,π) = −s̄v,π∆sv,π

Define biases of technical change

φkl ≡ ∆rK −∆wL− (1− σagg)∆ r

w
φπ ≡ ∆sv,π −∆ (1− sv,π)

These can be written as

φk,l = ∆sv,K −∆sv,L − (1− σagg)∆ r

w

φπ = − 1

s̄v,π
∆ (1− sv,π)
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The labor share can then be decomposed as

∆sv,L = ∆sv,L −∆
(
sv,K + sv,L

)
+ ∆ (1− sv,π)

= ∆sv,L − s̄v,K

s̄v,k + s̄v,L
∆sv,K − s̄v,L

s̄v,K + s̄v,L
∆sv,L + ∆ (1− sv,π)

=
s̄v,K

s̄v,K + s̄v,L
(
∆sv,L −∆sv,K

)
+ ∆ (1− sv,π)

Using the definitions of φk,l and φπ we have

∆sv,L =
s̄v,K

s̄v,K + s̄v,L
(σagg − 1)∆

r

w
− s̄v,K

s̄v,K + s̄v,L
φk,l − s̄v,πφπ

In the decomposition, we then use

sv,Lt+1 − s
v,L
t = s̄v,L

[
s̄v,K

s̄v,K + s̄v,L
(σagg − 1)∆

r

w
− s̄v,K

s̄v,K + s̄v,L
φk,l − s̄v,πφπ

]
(F.1)

F.2 Profit Share and Unmeasured Payments to Capital

In our benchmark decomposition, we assume that factor prices do not affect sv,π. This assumption
implicitly views changes in sv,π as stemming from shifts in preferences that change markups or
from changes in the share of materials. The top panel of Table F.1 contains these estimates.

We can decompose the total contribution of bias into a contribution from capital/labor bias
and a contribution from profit bias. From 1970-1999, the contribution of capital/labor bias was
-0.25 percentage points per year (-7.6 cumulative), while that of profit bias was -0.10 percentage
points per year (-3.0 cumulative). From 2000-2010, the contribution from capital/labor bias was
-0.37 percentage points per year (-4.1 cumulative), while that of profit bias was -0.50 percentage
points per year (-5.5 cumulative). Thus, while contributions from both the capital-labor bias and
profit bias accelerated in the 2000-2010 period, the profit bias contributes more to the post-2000
acceleration in the total contribution.

In this section, we also examine an alternative view put forward by Karabarbounis and Neiman
(2019): that sv,π reflects unmeasured payments to capital. This could happen if either the measured
capital stock understates the quantity of capital (e.g., it misses intangible capital) or the measured
rental rate understates the required return to capital. In either case, what we had labeled as
sv,π would actually respond to factor prices as well. To assess how this alternative view would
affect our conclusions, we perform the decomposition under the assumption that all of sv,π reflects
unmeasured payments to capital. To do this, we use (F.1) but set sv,K = 1− sv,L and sv,π = 0.

sv,Lt+1 − s
v,L
t = s̄v,L(1− s̄v,L)(σagg − 1)∆

r

w
− s̄v,L(1− s̄v,L)φk,l (F.2)

The bottom panel of Table F.1 contains these estimates. Compared to our baseline, the contri-
bution from factor prices is higher in magnitude, at 0.18 percentage points per year from 1970-1999
and 0.14 percentage points per year from 1970-2010. Thus, the contribution of the bias is larger,
with a decline of 0.43 percentage points per year from 1970 to 1999 (-13.0 cumulative), and 0.93
percentage points per year from 2000 to 2010 (-10.2 cumulative). In total, the contribution of the
bias is 3 percentage points higher than our baseline estimate.
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Table F.1 Contributions to Labor Share Change: Unmeasured Payments to Capital

Annual Contribution Cumulative Contribution
Labor Factor Labor Factor

Period Share Prices Bias Share Prices Bias

Profit Share
1970-1999 -0.25 0.10 -0.35 -7.61 3.00 -10.62
2000-2010 -0.79 0.09 -0.88 -8.73 0.94 -9.66

Unmeasured Payments to Capital
1970-1999 -0.25 0.18 -0.43 -7.61 5.41 -13.02
2000-2010 -0.79 0.14 -0.93 -8.73 1.51 -10.24

Note: The factor price and bias contributions are as defined in the text. Annual Contributions
are in percentage points per year and Cumulative Contributions are in percentage points.

F.3 Alternative Rental Prices

Our rental prices are based upon official NIPA deflators for equipment and structures capital. We
develop a Tornqvist index for the rental price to account for changing shares of two digit industries
and different types of capital over time. For wages, we use BLS data on total compensation and
hours for each industry, correcting for labor quality using indices from Jorgenson et al. (2013).
Jorgenson et al. (2013) measures labor quality as the deviation of total hours from a Tornqvist
index of hours across many different cells that represent workers with different amounts of human
capital, as in Jorgenson et al. (2005).

However, Gordon (1990) has argued that the NIPA deflators underestimate the actual fall in
equipment prices over time. We examine how this critique might change our results on the bias
of technical change by using an alternative rental price series for equipment capital that Cummins
and Violante (2002) developed by extending the work of Gordon (1990). Their series extends to
1999, so we compare our baseline to these rental prices during the 1970-1999 period. Using the
Cummins and Violante (2002) equipment prices implies that the wage to rental price ratio has
increased by 3.8 percent per year, instead of 2.0 percent per year with the NIPA deflators. This
change increases the contribution of factor prices to the labor share from 0.10 percentage points per
year to 0.18 percentage points per year, or about 2.4 percentage points over the 1970-1999 period.
The contribution from the bias thus also rises by 2.4 percentage points. Given our estimate of the
aggregate elasticity of substitution, changes in factor prices have not been the driving force behind
the declining labor share.

Table F.2 Contributions to Labor Share Change with Alternative Rental Price Series

Annual Contribution Cumulative Contribution
Annual Labor Factor Labor Factor

Deflator w
r Change Share Prices Bias Share Prices Bias

NIPA 2.02 -0.25 0.10 -0.36 -7.61 3.08 -10.70
GCV 3.80 -0.25 0.18 -0.44 -7.61 5.47 -13.08

Note: The factor price and bias contributions are as defined in the text. Annual Contributions are
in percentage points per year and Cumulative Contributions are in percentage points. Data covers
1970-1999.

In addition, our baseline rental price series estimates the rental price assuming a constant
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external real rate of return of 3.5%. This assumption could be violated if the real rate of return
has changed over time. We thus also examine the external nominal rate of return specification of
Harper et al. (1989). The rental rate for industry n is then defined as:

Ri,t = Ti,t(pi,t−1r
n
i,t + δi,tpi,t + (pi,t − pi,t−1))

where rni,t is the Moody’s BAA bond rate for the year (obtained from FRED), pi,t is the price index
for capital in that industry, δi,t is the depreciation rate for that industry, and Ti,t is the effective
rate of capital taxation. Thus, instead of using a constant external rate of return, we use the
BAA nominal rate and the realized rate of capital inflation (pi,t − pi,t−1). This specification thus
substitutes the realized rate of capital inflation for the expected rate of capital inflation.

Using the nominal external rate specification implies that the wage to rental price ratio has
increased by 1.1 percent per year from 1970 to 1999 and −0.14 percent per year from 2000 to
2010, instead of 2.0 and 1.4 percent per year with the external real rate specification. This change
decreases the contribution of factor prices to the labor share from 0.10 percentage points per year
from 1970 to 1999 and 0.09 percentage points per year from 2000 to 2010 to 0.04 and −0.02
percentage points per year. Given our estimate of the aggregate elasticity of substitution, these
changes remain small relative to the patterns of decline in the labor share.

In addition, our estimates of the bias of technical change decrease slightly to about 17.5 per-
centage points in aggregate from 1970 to 2010.

Table F.3 Contributions to Labor Share Change with Alternative Rate of Return Series

Annual Contribution Cumulative Contribution
Annual Labor Factor Labor Factor

Rate Period w
r Change Share Prices Bias Share Prices Bias

Real 1970-1999 1.97 -0.25 0.10 -0.35 -7.61 3.0 -10.6
Real 2000-2010 1.35 -0.79 0.09 -0.88 -8.73 0.94 -9.66

Nominal 1970-1999 1.13 -0.25 0.04 -0.30 -7.61 1.33 -8.94
Nominal 2000-2010 -0.14 -0.79 -0.02 -0.77 -8.73 -0.21 -8.52

Note: The factor price and bias contributions are as defined in the text. Annual Contributions
are in percentage points per year and Cumulative Contributions are in percentage points.

F.4 Labor Share from Production Data

Our benchmark analysis decomposed labor’s share of income as measured in the national accounts.
This data is built from manufacturing firms. Alternatively, we could analyze the changes in labor
share as measured from production data built from manufacturing plants. We will briefly describe
the advantages of each and why the analysis based on national accounts is our preferred measure.

The national accounts is built from firm data, so it includes all establishments (including non-
manufacturing establishments) of manufacturing firms. This data contains measures of overall labor
compensation.

The production data from the NBER CES production database is built from the same manu-
facturing plant database that we used to compute the aggregate elasticity. Because the aggregate
production data does not include benefits, in each year we adjust the payments to labor by the
ratio of total compensation to wages and salaries for manufacturing from NIPA.

We prefer using the labor share from the national accounts for two reasons. First, it makes
our study comparable to the rest of the literature that has studied the labor share. Second, the
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production data only includes expenses incurred at the plant level, such as energy and materials
costs. It does not include expenses such as advertising, research and development not conducted at
the plant, and all expenses at the corporate headquarters. The absence of these expense means that
value added, and hence our residual “profit”, are both overstated and may have different trends
over time.

Nevertheless, we examine the change in the labor share and its components under two alterna-
tives. First, we perform the same analysis as in the text, decomposing the change in the labor share
of value added as measured in the production data. Second, we decompose the change in labor’s
share of the total expenditure on capital and labor, d sl

sl+sk
, into the contribution from factor prices

and the contribution from biased technical change. We believe the latter is more comparable across
the two sources.

Figure F.1 displays the NIPA time series from the main paper against the labor share from the
NBER productivity database defined using both alternatives. The NBER measure of labor based
on value added falls from 0.58 in 1970 to 0.36 in 2009, while the NBER measure of labor based on
capital and labor cost declines from 0.76 in 1970 to 0.65 in 1999. The NIPA series declines from
0.74 in 1970 to 0.58 in 1999.

Figure F.1 Labor Share over Time: NIPA vs. NBER

Note: The red solid line is the labor share for manufacturing based on data from the BLS
Multifactor Productivity series. The green short dashed line is the labor share of labor and capital
costs for manufacturing using data from the NBER Productivity database. The blue long dashed
line is the labor share of value added for manufacturing using data from the NBER Productivity
database.

Table F.4 displays the change in the labor share and its components under two alternatives. In
addition, we report the same statistics using the NIPA data.

Labor’s share of value added in the production data declined at about the same rate between
1970-1999 and in the 2000s at 0.54 percentage points year from 1970-1999 and 0.57 percentage
points per year from 2000-2019. About 75% of the change in the bias measured using labor’s share
of value added happens from 1970-1999.

In contrast, labor’s share of capital/labor cost falls much faster in the 2000s, with an annual
decline of 0.33 percentage points from 1970-1999 and 0.91 percentage points from 2000-2009. It is
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Table F.4 Contributions to Labor Share Change using Production Data

Annual Contribution Cumulative Contribution
Labor Factor Labor Factor

Period Share Prices Bias Share Prices Bias

Labor’s Share of Value Added
1970-1999 -0.54 0.11 -0.65 -16.29 3.23 -19.51
2000-2009 -0.57 0.10 -0.66 -5.67 0.95 -6.62

Labor’s Share of Capital and Labor Cost
1970-1999 -0.17 0.16 -0.33 -5.11 4.78 -9.89
2000-2009 -0.75 0.16 -0.91 -7.52 1.57 -9.09

Labor’s Share of Value Added, NIPA
1970-1999 -0.25 0.10 -0.35 -7.61 3.00 -10.62
2000-2009 -0.62 0.07 -0.69 -6.20 0.71 -6.91

Note: The factor price and bias contributions are as defined in the text. Annual Contributions
are in percentage points per year and Cumulative Contributions are in percentage points.

thus more consistent both qualitatively and quantitatively with the overall pattern using national
accounts.
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G Additional Results for Section 3

This appendix describes some additional theoretical and quantitative results to complement Sec-
tion 3. Web Appendix G.1 describes local elasticities of substitution and Web Appendix G.2.1
derives a preliminary result under the assumption that each plant’s production function is ho-
mothetic. The assumption of constant returns to scale is relaxed in Web Appendix G.2.2. Web
Appendix G.2.3 generalizes the demand system to allow for arbitrary elasticities of demand and
imperfect pass-through. Web Appendix G.2.4 relaxes the assumption that production functions
are homothetic.

For this section, we use the following notation for relative factor prices: ω ≡ w
r and q ≡ q

r . In
addition, we define pni ≡ Pni/r and pn ≡ Pn/r to be plant i’s and industry n’s prices respectively
normalized by the rental rate. It will also be useful to define i’s cost function (normalized by r) to
be

zni(Yni, ω, q) = min
Kni,Lni,Mni

Kni + ωLni + qMni subject to Fni(Kni, Lni,Mni) ≥ Yni

As in Appendix A, two results will be used repeatedly. First, Shephard’s lemma implies that for
each i:

(1− sMni )(1− αni) =
zniω(Yni, ω, q)ω

zni(Yni, ω, q)
(G.1)

sMni =
zniq(Yni, ω, q)q

zni(Yni, ω, q)
(G.2)

Second, αn =
∑

i∈In αniθni, so for any quantity κn,∑
i∈In

(αni − αn)κnθni = 0 (G.3)

G.1 Locally-Defined Elasticities

In our baseline analysis we assumed that plant i produced using a nested CES production function
of the form

Fni(Kni, Lni,Mni) =

([
(AniKni)

σ−1
σ + (BniLni)

σ−1
σ

] σ
σ−1

ζ−1
ζ

+ (CniMni)
ζ−1
ζ

) ζ
ζ−1

In that context, σ was i’s elasticity of substitution between capital and labor and ζ was i’s elasticity
of substitution between materials and i’s capital-labor bundle.

When i’s production function does not take this parametric form, we define local elasticities of
substitution. Suppose that i produces using the production function Yni = Fni(Kni, Lni,Mni) with
corresponding cost function zni. We define σni and ζni to satisfy

σni − 1 =
d ln αni

1−αni
d lnω

∣∣∣∣
Yni is constant

(αni − αM )(ζni − 1) =
d ln

1−sMni
sMni

d lnω

∣∣∣∣∣∣
Yni is constant
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σni and ζni measure how i’s relative factor usage changes in response to changes in relative factor
prices holding i’s output fixed (as one moves along an isoquant). That output remains fixed is
relevant only if production functions are non-homothetic, in which case a change in a plant’s scale
would alter its relative factor usage. This section derives expressions for σni and ζni in terms of i’s
cost function.

Claim G.1 σni and ζni satisfy

(αni − αM )ζni = − 1

1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]
σni = − 1

αni

{
zniωωω

zniω
+
zniωqq

zniω
(1− αM ) +

sMni
1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]}
Proof. Differentiating (G.2) and (G.1) with respect to ω gives

d ln sMni
d lnω

=

{
zniqY Yni
zniq

d lnYni
d lnω +

zniqωω
zniq

+
zniqqq
zniq

d ln q
d lnω + d ln q

d lnω

− zniY Yni
zni

d lnYni
d lnω −

zniωω
zni
− zniqq

zni
d ln q
d lnω

}
d ln(1− sMni )

d lnω
+
d ln(1− αni)

d lnω
=

{
zniωY Yni
zniω

d lnYni
d lnω + zniωωω

zniω
+

zniωqq
zniω

d ln q
d lnω + 1

− zniY Yni
zni

d lnYni
d lnω −

zniωω
zni
− zniqq

zni
d ln q
d lnω

}

Imposing d lnYni
d lnω = 0, d ln q

d lnω = 1− αM , and Shephard’s lemma, these equations can be written as

d ln sMni
d lnω

=
zniqωω

zniq
+
zniqqq

zniq
(1− αM ) + (1− αM )− (1− sMni )(1− αni)− sMni (1− αM )

d ln(1− sMni )
d lnω

+
d ln(1− αni)

d lnω
=

zniωωω

zniω
+
zniωqq

zniω
(1− αM ) + 1− (1− sMni )(1− αni)− sMni (1− αM )

Simplifying yields

d ln sMni
d lnω

=
zniqωω

zniq
+
zniqqq

zniq
(1− αM ) + (1− sMni )(αni − αM )

d ln(1− sMni )
d lnω

+
d ln(1− αni)

d lnω
=

zniωωω

zniω
+
zniωqq

zniω
(1− αM ) + αni − sMni (αni − αM )

Using
d ln 1−sMni
d lnω = − sMni

1−sMni
d ln sMni
d lnω and plugging the first into the second yields

d ln(1− αni)
d lnω

=
zniωωω

zniω
+
zniωqq

zniω
(1− αM ) +

sMni
1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]
+ αni

Finally, the definitions of the elasticities imply σni− 1 = − 1
αni

d ln(1−αni)
d lnω and (αni−αM )(ζni− 1) =

− 1
1−sMni

d ln sMni
d lnω , so that

(αni − αM )ζni = − 1

1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]
σni = − 1

αni

{
zniωωω

zniω
+
zniωqq

zniω
(1− αM ) +

sMni
1− sMni

[
zniqωω

zniq
+
zniqqq

zniq
(1− αM )

]}
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G.2 Elasticity of Demand and Returns to Scale

G.2.1 Industry Substitution and Within-Plant Substitution

We now define plant i’s local returns to scale to be γni =
[
zniY Yni
zni

]−1
. The next lemma characterizes

the within-plant components of industry substitution.

Lemma G.1 Suppose that plant i produces using the homothetic production function Fni. The
industry elasticity of substitution for industry n, σNn , can be written as

σNn = (1− χn)σ̄n + χn
¯sMn ζ̄n +

∑
i∈In(αni − αn)θni

1
γni

d lnYni
d lnω

αn(1− αn)

where ζ̄n ≡
∑

i∈In
(αni−αn)(αni−αM )sMni∑

j∈In (αnj−αn)(αnj−αM )sMnj
ζni and s̄Mn ≡

∑
i∈In

(αni−αn)(αni−αM )∑
j∈In (αnj−αn)(αnj−αM )

sMni

Proof. Following the steps of the proof of Proposition 1′, we have

σNn = (1− χn)σn +

∑
i∈In(αni − αn) dθnid lnω

αn(1− αn)
+ χn (G.4)

θni =
rKni + wLni∑

j∈In rKnj + wLnj
=

(1− sMni )zni∑
j∈In(1− sMnj)znj

d ln(1− sMni )
d lnω

= sMni (ζni − 1)(αni − αM )

The change in i’s expenditure on all inputs depends on its return to scale and its expenditure
shares:

d ln zni(Yni, ω, q)

d lnω
=

YnizniY
zni

d lnYni
d lnω

+
zniωω

zni
+
zniqq

zni

d ln q

d lnω

=
1

γni

d lnYni
d lnω

+ (1− sMni )(1− αni) + sMni (1− αM )

=
1

γni

d lnYni
d lnω

+ (1− αni) + sMni (αni − αM ) (G.5)

Putting these pieces together, since
∑

i∈In(αni − αn)θni
d ln

∑
j∈In (1−sMnj)znj
d lnω = 0, we have

∑
i∈In

(αni − αn)θni
d ln θni
d lnω

=
∑
i∈In

(αni − αn)θni

[
d ln 1− sMni
d lnω

+
d ln zni
d lnω

]

=
∑
i∈In

(αni − αn)θni

[
sMni (ζni − 1)(αni − αM ) + 1

γni
d lnYni
d lnω

+(1− αni) + sMni (αni − αM )

]
=

∑
i∈In

(αni − αn)θni

[
sMni ζni(αni − αM ) +

1

γni

d lnYni
d lnω

+ (1− αni)
]
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Using the definitions of ζ̄n and s̄Mn , this becomes∑
i∈In

(αni − αn)θni
d ln θni
d lnω

=
∑
i∈In

(αni − αn)θni

[
s̄Mn ζ̄n(αni − αM ) +

1

γni

d lnYni
d lnω

+ (1− αni)
]

Using the fact that for any constant κ,
∑

i∈In(αni − αn)θniκ = 0, we can write this as

∑
i∈In

(αni − αn)θni

[
s̄Mn ζ̄n(αni − αn) +

1

γni

d lnYni
d lnω

− (αni − αn)

]
Finally, we can plug this back into (G.4) to get

σNn = (1− χn)σ̄n + χns̄
M
n ζ̄n +

∑
i∈In(αni − αn)θni

1
γni

d lnYni
d lnω

αn(1− αn)

G.2.2 Returns to Scale

This section relaxes the assumption that each plant’s production function exhibits constant returns
to scale.

Claim G.2 Suppose that plant i produces using the production function Yni = Fni (Kni, Lni,Mni) =
Gni(Kni, Lni,Mni)

γ, where Gni has constant returns to scale and γ ≤ εn
εn−1 . Let x = εn

εn+γ(1−εn) .
Then the industry elasticity of substitution is

σn = (1− χn)σ̄n + χn
[
s̄Mn ζ̄n + (1− s̄Mn )x

]
and the revenue-cost ratio is PniYni

rKni+wLni+qMni
= x

x−1 .

Proof. Plant i’s optimal price is pni = εn
εn−1zniY (Yni, ω, q), so differentiating yields

d ln pni
d lnω

=
zniY Y Yni
zniY

d lnYni
d lnω

+
zniY ωω

zniY
+
zniY qq

zniY

d ln q

d lnω

The production function implies that zniY Y Yni
zniY

= 1
γ−1, zniY ωωzniY

= (1−αni)(1−sMni ), and
zniY qq
zniY

= sMni ,
so this can be written as

d ln pni
d lnω

=

(
1

γ
− 1

)
d lnYni
d lnω

+ (1− αni)(1− sMni ) + sMni (1− αM )

The change in i’s output is then

d lnYni
d lnω

= −εn
d ln pni
d lnω

+
d lnYnp

εn
n

d lnω

= −εn
(

1

γ
− 1

)
d lnYni
d lnω

− εn
[
(1− αni)(1− sMni ) + sMni (1− αM )

]
+

[
d lnYnp

εn
n

d lnω

]
This can be rearranged as

d lnYni
d lnω

= γx
[
(αni − αn)− sMni (αni − αM )

]
+
xγ

εn

[
d lnYnp

εn
n

d lnω
− εn(1− αn)

]
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Using Lemma G.1 and the fact that
∑

i∈In(αni − αn)θni

[
d lnYnp

εn
n

d lnω − εn(1− αn)
]

= 0 gives

σNn = (1− χn)σ̄n + χns̄
M
n ζ̄n +

∑
i∈In(αni − αn)θnix

[
(αni − αn)− sMni (αni − αM )

]
αn(1− αn)

= (1− χn)σ̄n + χns̄
M
n ζ̄n +

∑
i∈In(αni − αn)θnix

[
(αni − αn)− s̄Mn (αni − αM )

]
αn(1− αn)

where the second line uses the definition of s̄Mn . The desired result follows using
∑

i∈In(αni −
αn)θnis̄

M
n (αM − αn) = 0 and the definition of χn.

Finally, since pni = εn
εn−1zniY , the revenue cost ratio is

PniYni
rKni + wLni + qMni

=
pniYni
zni

=
εn

εn − 1

zniY Yni
zni

=
εn

εn − 1

1

γ
=

x

x− 1

G.2.3 Demand

In this section we generalize the demand system to a class of homothetic demand systems in which
demand for each good is strongly separable. While this class nests Dixit-Stiglitz demand, it allows
for arbitrary demand elasticities and pass through rates. An industry aggregate Yn is defined to
satisfy

1 =
∑
i∈In

Hni (Yni/Yn) (G.6)

where each Hni is positive, smooth, increasing, and concave. If Pn is the ideal price index associated

with Yn, then cost minimization implies Pni
Pn

= H ′ni

(
Yni
Yn

)
. Define the inverse of H ′ni to be hni(·) =

H ′−1
ni (·). i faces a demand curve; to find its elasticity of demand, we can differentiate:

d lnYni/Yn = −εni(Pni/Pn)d lnPni/Pn (G.7)

where the elasticity of demand is εni(x) ≡ −h′ni(x)x
hni(x) . The optimal markup chosen by i will satisfy

µni(Pni/Pn) = εni(Pni/Pn)
εni(Pni/Pn)−1 . It will be useful to define bni to be i’s local relative rate of pass

through: the responsiveness of Pni to a change in i’s marginal cost. Since Pni = µ(Pni/Pn)×mcni,

then d lnPni
d ln mcni

=
Pni/Pnµ

′
ni

µni
d lnPni
d ln mcni

+ 1, so that bni(x) ≡ 1

1−
xµ′
ni

(x)

µni(x)

.

Lastly, we define αPn ≡ 1 − d ln pn
d lnω to be the response of the ideal price index to a change in

relative factor prices. The following claim describes the industry elasticity of substitution.

Claim G.3 Suppose that each Fni exhibits constant returns to scale and the demand structure in
industry n satisfies (G.6). Then the industry elasticity is

σNn = (1− χn)σ̄n + χns̄
M
n ζ̄n + χn(1− s̄Mn )x̄n
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where

x̄n ≡
∑

i∈In(αni − αn)θni
[
(αni − αPn )− sMni (αni − αM )

]
εnibni∑

i∈In(αni − αn)θni
[
(αni − αPn )− sMni (αni − αM )

]
αPn =

∑
i∈In PniYniεnibni

[
αni − sMni (αni − αM )

]∑
i∈In PniYniεnibni

Proof. Optimal price setting implies pni = µi(pni/pn)zniY . Taking logs and differentiating gives

d ln pni/pn
d lnω

=
µ′i(pni/pn)pni/pn

µi(pni/pn)

d ln pni/pn
d lnω

+
d ln zniY
d lnω

− d ln pn
d lnω

Constant returns to scale implies d ln zniY
d lnω = (1−αni)(1−sMni )+sMni (1−αM ) = (1−αni)+sMni (αni−

αM ), so this can be written as

d ln pni/pn
d lnω

= bni
[
sMni (αni − αM )− (αni − αPn )

]
(G.8)

The change in output is then

d lnYni/Yn
d lnω

= −εni
d ln pni/pn
d lnω

= εnibni
[
(αni − αPn )− sMni (αni − αM )

]
To get at the aggregate elasticity, we compute the following∑

i∈In

(αni − αn)θni
d lnYni
d lnω

=
∑
i∈In

(αni − αn)θni
d lnYni/Yn
d lnω

=
∑
i∈In

(αni − αn)θniεnibni
[
(αni − αPn )− sMni (αni − αM )

]
=

∑
i∈In

(αni − αn)θnix̄n
[
(αni − αPn )− sMni (αni − αM )

]
=

∑
i∈In

(αni − αn)θnix̄n
[
(αni − αPn )− s̄Mn (αni − αM )

]
=

∑
i∈In

(αni − αn)θnix̄n
[
(αni − αn)− s̄Mn (αni − αn)

]
= αn(1− αn)χn(1− s̄Mn )x̄n

where the third equality uses the definition of x̄n and the fourth uses the definition s̄Mn . This
expression and Lemma G.1 give the desired result.

It remains only to compute αPn . Since
∑

i∈In
PniYni
PnYn

d lnYni/Yn
d lnω = 0, we can use (G.7) and (G.8)

to write

0 =
∑
i∈In

PniYni
PnYn

εnibni
[
sMni (αni − αM )− (αni − αPn )

]
which simplifies to

αPn =

∑
i∈In PniYniεnibni

[
αni − sMni (αni − αM )

]∑
i∈In PniYniεnibni
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G.2.4 Non-Homothetic Production

This section analyzes how the industry elasticity of substitution is altered if production is non-
homothetic. This requires a more careful definition of the elasticities of substitution. A change in
factor prices will have a direct effect on a plant’s choice of capital-labor ratio, and may have an
indirect impact if the change in factor prices alters a plant’s scale. We pursue an approach similar
to Joan Robinson: we define a plant’s elasticity of substitution to be how a change in relative factor
prices alters the plant’s capital-labor ratio holding output fixed. Similarly, an industry’s elasticity
of substitution is the response of the industry’s capital labor ratio to a change in relative factor
prices holding fixed the industry aggregate, Yn.

We first characterize the plant-level elasticity of substitution, and then derive an expression
for the industry level elasticity. In the interest of space, we restrict attention to the case in which
plants do not use materials.

Just as 1− αni
(

= zniωω
zni

)
is the labor share of i’s cost, we define α̃ni so that 1− α̃ni = zniY ωω

zniY
,

the labor share of i’s marginal cost.
Since 1− αni = zniω(Yni,ω)ω

zni(Yni,ω) , we have

d ln(1− αni) =
zniωY Yni
zniω

d lnYni +
zniωωω

zniω
d lnω + d lnω − zniY Yni

zni
d lnYni −

zniωω

zni

Since zniωY Yni
zniω

= zniωY ω
zniY

zniY Yni
zni

, this can be arranged as

d ln(1− αni) =

(
zniωωω

zniω
+ 1− (1− αni)

)
d lnω +

(
1− α̃ni
1− αni

− 1

)
1

γni
d lnYni

Using d ln αni
1−αni = − 1

αni
d ln(1− αni), we have

d ln
αni

1− αni
=

(
− 1

αni

zniωωω

zniω
− 1

)
d lnω +

α̃ni − αni
αni(1− αni)

1

γni
d lnYni

By definition, σni − 1 is the change in αni
1−αni holding Yni fixed. The plant level elasticity of substi-

tution is

σni = − 1

αni

zniωωω

zniω

and

d ln
αni

1− αni
= (σni − 1)d lnω +

α̃ni − αni
αni(1− αni)

1

γni
d lnYni (G.9)

Claim G.4 The industry elasticity is

σNn = (1− χn)σ̄n + χ̃nx̄n

where χn and σ̄n are defined as in Lemma G.1 and

χ̃n ≡
∑
i∈In

(α̃ni − αn)(α̃ni − αPn )θni
αn(1− αn)

x̄n ≡

∑
i∈In(α̃ni − αn)(α̃ni − αPn )θni

εn/γni

1+εn
zniY Y Yni
zniY∑

i∈In(α̃ni − αn)(α̃ni − αPn )θni
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and αPn is defined to satisfy 1− αPn = d ln pn
d lnω .

Proof. Following the same logic as in the benchmark, we have

d ln
αn

1− αn
=
∑
i∈In

αni(1− αni)θni
αn(1− αn)

d ln
αni

1− αni
+
∑
i∈In

(αni − αn)

αn(1− αn)
θnid ln θni

Using (G.9), this becomes

d ln
αn

1− αn
=

∑
i∈In

αni(1− αni)θni
αn(1− αn)

(σni − 1)d lnω +
∑
i∈In

(α̃ni − αni)θni
αn(1− αn)

1

γni
d lnYni +

∑
i∈In

(αni − αn)

αn(1− αn)
θnid ln θni

= (1− χn)(σ̄n − 1)d lnω +
∑
i∈In

(α̃ni − αni)θni
αn(1− αn)

1

γni
d lnYni +

∑
i∈In

(αni − αn)

αn(1− αn)
θnid ln θni

where the second line used the definitions of σ̄n and χn. Since θni = zni/
∑

j∈In znj , we have

∑
i∈In

(αni − αn)θnid ln θni =
∑
i∈In

(αni − αn)θni

zniY Yni
zni

d lnY +
zniωω

zni
d lnω − d ln

∑
j∈In

znj


=

∑
i∈In

(αni − αn)θni

[
1

γni
d lnY + (1− αni)d lnω

]
Plugging this in and combining coefficients gives

d ln
αn

1− αn
= (1− χn)(σ̄n − 1)d lnω +

∑
i∈In

(α̃ni − αn)θni
αn(1− αn)

1

γni
d lnYni +

∑
i∈In

(αni − αn)

αn(1− αn)
θni(1− αni)d lnω

One can easily verify that
∑

i∈In
(αni−αn)(αni−1)

αn(1−αn) θni = χn. This and d ln αn
1−αn = d lnKn/Ln− d lnω

imply

d lnKn/Ln = (1− χn)σ̄nd lnω +
∑
i∈In

(α̃ni − αn)θni
αn(1− αn)

1

γni
d lnYni (G.10)

Finally we need to address the changes in scale. i’s price is pni = εn
εn−1zniY , so the change in i’s

price is

d ln pni =
zniY Y Yni
zniY

d lnYni +
zniY ωω

zniY
d lnω

=
zniY Y Yni
zniY

d lnYni + (1− α̃ni)d lnω

If the change in the industry price index satisfies d ln pn = (1−αPn )d lnω, then the change in output
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is

d lnYni = −εnd ln
pni
pn

+ d lnYn

= −εn
(
zniY Y Yni
zniY

d lnYni + (1− α̃ni)d lnω − (1− αPn )d lnω

)
+ d lnYn

=
εn(α̃ni − αPn )d lnω + d lnYn

1 + εn
zniY Y Yni
zniY

Using the definition of x̄n and χ̃n, we therefore have that

d lnKn/Ln = (1− χn)σ̄nd lnω +
∑
i∈In

(α̃ni − αn)θni
αn(1− αn)

1

γni

εn(α̃ni − αPn )d lnω + d lnYn

1 + εn
zniY Y Yni
zniY

= (1− χn)σ̄nd lnω + χ̃nx̄nd lnω +
∑
i∈In

(α̃ni − αn)θni
αn(1− αn)

1/γni

1 + εn
zniY Y Yni
zniY

d lnYn

Since σNn is defined to be the change in Kn/Ln in response to a change in ω holding fixed Yn, we
have

σNn = (1− χn)σ̄n + χ̃nx̄n
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H Entry and Exit

This section studies an economy with entry and exit by introducing entry and overhead costs.
In doing this, we must address several issues. First, we have to specify which expenditures are
measured in our data. For example, entry costs incurred before production are likely not measured
in our data. Second, we have to specify the factor content of entry and overhead costs. In this
section, we study several variations of these assumptions. For each, we derive an upper bound for
the aggregate elasticity of substitution equal to or slightly above our baseline estimate, as well as
a lower bound using our dynamic panel estimates.

H.1 Environment and Summary of Results

Entry and Overhead Costs Use Final Output

Consider an economy with a continuum of entrepreneurs. Each entrepreneur can draw a random
technology τ from an exogenous distribution with CDF T (τ) by paying an entry cost of fE units
of final output. After observing the draw, she can operate a plant with the production function
Fτ (K,L,M) if she is willing to pay an overhead cost of fO units of final output. Each production
function Fτ is assumed to exhibit constant returns to scale. We assume here that the overhead cost
is measured as an expenditure on intermediate inputs in our data, but the entry cost is not.

For a plant with technology τ , let cvτ be the unit cost associated with the production function
Fτ . Entrepreneurs follow a cutoff rule and operate the plant if variable profit outweighs the fixed
operating cost. Free entry implies that cost of a productivity draw equals the expected profit,
PfE =

∫
max

{
(pτ − cvτ )yτ − PfO, 0

}
dT (τ), where pτ and yτ are the optimal choices of price and

quantity.
Let Eτ be an indicator of whether plant τ chooses to operate. Should the plant enter, we

denote its capital share by ατ and its expenditure on capital and labor as a fraction of the average
expenditure by θτ = rKτ+wLτ∫

[rKτ̃+wLτ̃ ]Eτ̃dT (τ̃)
. Thus the aggregate capital share can be expressed as

α =
∫
ατθτEτdT (τ). We show in Web Appendix H.2 that the aggregate capital labor elasticity is

given by

σagg − 1 =
1

α(1− α)

∫
dατ

d lnw/r
θτEτdT (τ) +

1

α(1− α)

∫
dEτ

d lnw/r
(ατ − α)θτdT (τ)

+ χs̄M (ζ̄ − 1) + χ(1− s̄M )(ε− 1) (H.1)

where χ ≡
∫

(ατ−α)2θτEτdT (τ)
α(1−α) , sMτ is the share of observed expenditures (including both the op-

erating cost and variable costs) spent on intermediate materials and ζτ captures substitution

between intermediate and primary inputs, defined to satisfy (α − ατ )(ζτ − 1)
d ln

sMτ
1−sMτ

d lnw/r , s̄M ≡∫
(ατ−α)(ατ−αM )θτ sMτ dT (τ)∫

(ατ−α)(ατ−αM )θτdT (τ)
, ζ̄ ≡

∫
(ατ−α)(ατ−αM )θτ sMτ ζτdT (τ)∫
(ατ−α)(ατ−αM )θτ sMτ dT (τ)

, and αM ≡ d lnP/r
d lnw/r .

The first term captures within-plant substitution between capital and labor. The second term
captures the change in the aggregate capital share due to entry and exit; an increase in the wage
induces labor-intensive plants to exit and capital-intensive plants to enter. The third term captures
substitution between primary and intermediate inputs. The final term captures changes in plants’
scales; an increase in the wage causes capital-intensive plants to expand relative to labor-intensive
plants.
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With this formula in hand, we now show that our baseline estimate of the aggregate elasticity
of substitution is larger than the true aggregate elasticity. First, our estimated micro elasticity of
substitution—-in particular the estimate of σ̄ derived using ατ as the dependent variable in (C.1)—
incorporates the first two terms of (H.1), capturing both within-plant substitution and changes due
to entry and exit. At root, our cross-sectional estimates capture how the average capital share
varies with the local wage, and changes in this average reflect both the intensive and extensive
margins. In Web Appendix H.3 we provide more detail, discuss how selection causes an upward
bias similar to the weighted regressions in column 5 of Table C.2, and confirm these findings using
Monte Carlo simulations in Web Appendix H.5.

Second the estimated micro elasticity of substitution between intermediate and primary inputs,
ζ̂, reported in Table III, is larger than ζ̄. ζ̄ captures only the intensive margin—substitution within
plants—while ζ̂ uses cross-sectional variation and incorporates both the intensive and extensive
margins.

Finally, our baseline strategy overstates how a plant’s scale responds to a change in its marginal
cost because part of this cost—the overhead cost—is fixed. Formally, we had estimated this response
from plants’ ratios of revenue to cost (in our baseline model, this was a function of the elasticity of

demand, ε
ε−1). Here, cost includes both variable and overhead components: ε̂τ

ε̂τ−1 =
ε
ε−1

cvτyτ

cvτyτ+cOfO
<

ε
ε−1 , or ε < ε̂τ .

Together, these imply that our baseline estimate is an upper bound for the true aggregate
elasticity. Using the restrictions that ε̂ > 1 and ζ̄ > 0, the intensive margin effect (the first term in
(H.1)) provides a conservative lower bound on the aggregate elasticity. We use our dynamic panel
estimates to compute this lower bound. The implied range averages [0.35, 0.65] across years.13

We also explore alternative assumptions about the factor content of overhead costs. If overhead
costs used a plant’s own output, then the upper bound for the aggregate elasticity is the same
and the lower bound is slightly lower, and can be found by setting ε = 0. This averages 0.30
across years. If overhead costs used labor, the aggregate elasticity would include an extra term
which captures the contribution of changes in the composition of expenditures between variable and
overhead costs. However, this term is negative and quantitatively negligible, so the upper bound
is the same as when the overhead cost uses final output, and the lower bound is slightly lower.

Foregone Labor

We now instead assume that both entry costs and overhead costs require the entrepreneur’s labor,
but these costs—the opportunity cost of the entrepreneur’s time—do not appear on the plant’s
wage bill. In such a world, the measured capital share α̂, based on measured expenditures on
labor and capital, differs from α, the true capital share incorporating unmeasured labor. Entry
and overhead costs in unmeasured labor mean that the measured capital share is above the true
capital share, so α̂ > α.

We then define two aggregate elasticities: σ̂agg − 1 ≡ d ln α̂
1−α̂

d lnw/r captures changes in measured

factor usage, while σagg − 1 =
d ln α

1−α
d lnw/r captures changes in true factor usage. σ̂agg is relevant for

questions about changes in national accounts, whereas σagg is relevant for questions such as the
welfare cost of capital taxation. In practice, we show that the two elasticities are fairly close.
The measured share elasticity σ̂agg corresponds to our baseline estimate, while the resource-based

13The lower bound uses an intensive margin micro elasticity of substitution of 0.34 from column (2) of
Table C.6. To derive the upper bound, we compute the aggregate elasticity in each year using our baseline
formula but using the estimated cross-sectional elasticity from column (4) of Table C.2.
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elasticity σagg is slightly higher than our baseline estimate.
To see the connection between the two, we define the following objects: V ≡

∫
cvτyτEτdT (τ)

and O ≡
∫
wfOEτdT (τ) be average expenditure on variable inputs and average payment of the

operating cost among those that pay the entry cost. In addition, let ŝM be the aggregate share
of measured expenditures spent on intermediate inputs. Per entrant, the average expenditure on
capital can be expressed as α̂(1− ŝM )V , while the average expenditure on labor is wfE +O+ (1−
α̂)(1− ŝM )V . The underlying capital share is thus

α =
α̂(1− ŝM )V

wfE +O + (1− ŝM )V

Free entry requires that wfE = 1
ε−1V −O. Together these yield

α =
(1− ŝM )

1
ε−1 + (1− ŝM )

α̂ (H.2)

In Web Appendix H.4 we show that σ̂agg corresponds to our baseline estimate. We also show
that differentiating (H.2) and rearranging yields

σagg − σ̂agg =

d ln(1−ŝM )
d lnw/r + α̂(1− σ̂agg)

1 + (1− α̂)(1− ŝM )(ε− 1)

We then estimate that σagg−σ̂agg averages 0.072 across all industries in all years.14 A small positive
gap between σagg and σ̂agg is in line with our Monte Carlo analysis described in Web Appendix H.5.

H.2 Proofs when Measured Inputs Include Overhead Costs

Define cvτ as unit cost of output, and let cOτ be the cost per unit of the overhead cost, so that the
overhead cost for a plant with technology τ is cOτ f

O. This notation allows for various assumptions
about the factor content of overhead costs, covering the case in which overhead costs are denomi-
nated in final output (cOτ = P ), a plant’s own output, (cOτ = cvτ ) or labor (cOτ = w). Thus plant τ ’s
expenditure is zτ = cvτyτ + cOτ f

O. svτ ≡
cvτyτ
zτ

is the share of τ ’s expenditure spent on variable costs.
Then a plant’s expenditure on capital and labor as a fraction of the aggregate expenditure is

θτ ≡
(1− sMτ )zτ∫

(1− sMτ̃ )zτ̃Eτ̃dT (τ̃)
.

The aggregate capital share is α =
∫
ατθτEτdT (τ). Before deriving an expression for the aggregate

elasticity of substitution, we begin with a lemma:

Lemma H.1

svτ
d ln cτ/P

d lnw/r
+ (1− svτ )

d ln cOτ /P

d lnw/r
= −(1− sMτ )(ατ − αM )

Proof. Let αvτ be the share of capital and labor used for variable costs that is spent on capital, and
let sMv

τ be the share of variable costs spent on materials. Similarly, let αOτ be the share of capital

14Since the overhead cost is unmeasured, we have ε̂ = ε. We compute d ln(1−ŝM )
d lnw/r directly after showing

that it is closely related to the expression for ζNn in Proposition 2. In most years it is slightly negative and
is always close to zero.
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and labor used for overhead costs that is spent on capital, and let sMO
τ be the share of overhead

costs spent on materials. Then Shephard’s Lemma implies

svτ
d ln cτ/P

d lnw/P
+ (1− svτ )

d ln cOτ /r

d lnw/r
= svτ

[
(1− sMv

τ )(1− αvτ ) + sMv
τ (1− αM )− (1− αM )

]
+(1− svτ )

[
(1− sMO

τ )(1− αOτ ) + sMO
τ (1− αM )− (1− αM )

]
= (1− sMτ )(1− ατ ) + sMτ (1− αM )− (1− αM )

= −(1− sMτ )(ατ − αM )

With this in hand, we derive the following expression for the aggregate elasticity of substitution:

Proposition H.1 If measured costs include overhead costs, the aggregate elasticity of substitution
is

σagg = (1−χ)σ̄+

∫
ατ − α
α(1− α)

θτ
dEτ

d lnw/r
dT (τ) +χ(1− s̄M )ζ̄ + ε

∫
ατ − α
α(1− α)

svτ
d lnP/cvτ
d lnw/r

θτEτdT (τ)

(H.3)
where στ , σ̄, χ, ζτ , ζ̄, and s̄M are defined so that

στ − 1 =
d ln ατ

1−ατ
d lnw/r

σ̄ =

∫
ατ (1− ατ )θτEτστdT (τ)∫
ατ (1− ατ )θτEτdT (τ)

χ =

∫
(ατ − α)2θτEτdT (τ)

α(1− α)

(αM − ατ )(ζτ − 1) =
d ln sMτ

1−sMτ
d lnw/r

ζ̄ =

∫
(ατ − α)(ατ − αM )sMτ θτEτζτdT (τ)∫
(ατ − α)(ατ − αM )sMτ θτEτdT (τ)

s̄M =

∫
(ατ − α)(ατ − αM )θτEτs

M
τ dT (τ)∫

(ατ − α)(ατ − αM )θτEτdT (τ)

Proof. Differentiating α =
∫
ατθτEτdT (τ) yields

dα

d lnw/r
=

∫
dατ

d lnw/r
θτEτdT (τ) +

∫
(ατ − α)θτ

dEτ
d lnw/r

dT (τ) +

∫
(ατ − α)

d ln θτ
d lnw/r

θτEτdT (τ)

(H.4)
Using σagg − 1 = 1

α(1−α)
dα

d lnw/r , στ − 1 = 1
ατ (1−ατ )

dατ
d lnw/r , and the definition of σ̄, we can express

this as

σagg − 1 = (1− χ)(σ̄ − 1) +

∫
ατ − α
α(1− α)

θτ
dEτ

d lnw/r
dT (τ) +

∫
ατ − α
α(1− α)

d ln θτ
d lnw/r

θτEτdT (τ) (H.5)
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The last term can be decomposed into two parts:∫
(ατ−α)

d ln θτ
d lnw/r

θτEτdT (τ) =

∫
(ατ−α)

d ln(1− sMτ )

d lnw/r
θτEτdT (τ)+

∫
(ατ−α)

d ln zτ
d lnw/r

θτEτdT (τ)

(H.6)

We tackle each of these two terms separately. For the first term, noting that d ln(1−sMτ )
d lnw/r = −sMτ

d ln
sMτ

1−sMτ
d lnw/r =

sMτ (ατ − αM )(ζτ − 1), the definitions of ζ̄, s̄M , and χ imply:∫
(ατ − α)

d ln(1− sMτ )

d lnw/r
θτEτdT (τ) =

∫
(ατ − α)sMτ (ατ − αM )(ζτ − 1)θτEτdT (τ)

=

∫
(ατ − α)sMτ (ατ − αM )θτEτdT (τ)(ζ̄ − 1)

=

∫
(ατ − α)(ατ − αM )θτEτdT (τ)s̄M (ζ̄ − 1)

= α(1− α)χs̄Mτ (ζ̄ − 1)

Second, given the price it sets, a plant’s expenditure on variable inputs is cvτyτ =
(

ε
ε−1

)−ε
Y P ε(cvτ )1−ε.

With this, along with the fact that the definition of the elasticity of substitution holds Y constant,
we have

d ln zτ/P

d lnw/r
= svτ

d lnY (P/cvτ )ε−1

d lnw/r
+ (1− svτ )

d ln(cOτ /P )

d lnw/r

= εsvτ
d lnP/cvτ
d lnw/r

+ svτ
d ln cvτ/P

d lnw/r
+ (1− svτ )

d ln(cOτ /P )

d lnw/r

= εsvτ
d lnP/cvτ
d lnw/r

− (1− sMτ )(ατ − αM )

where the last line follows from Lemma H.1. Thus using the definition of s̄M we have∫
ατ − α
α(1− α)

d ln zτ
d lnw/r

θτEτdT (τ) = ε

∫
ατ − α
α(1− α)

svτ
d lnP/cvτ
d lnw/r

θτEτdT (τ)− χ(1− s̄M ) (H.7)

The proposition follows from adding one to each side.
We now specialize to to various assumptions about the factor content of entry and overhead

costs.

Corollary 1 Suppose that overhead costs are denominated in common units across plants, so that
cOτ = cO. Then∫

ατ − α
α(1− α)

svτ
d lnP/cvτ
d lnw/r

θτEτdT (τ) = χ(1− s̄M ) +
d ln cO/P

d lnw/r

1− sv

1− sM

∫
(ατ − α)(1− sMτ )EτdT (τ)

α(1− α)
∫
EτdT (τ)

Proof. Lemma H.1 can be rearranged as svτ
d lnP/cvτ
d lnw/r = (1 − sMτ )(ατ − α) + (1 − svτ )d ln cO/P

d lnw/r . The
integral can be expressed as∫

(ατ − α)svτ
d lnP/cvτ
d lnw/r

θτEτdT (τ) = χα(1− α)(1− s̄M ) +

∫
(ατ − α)(1− svτ )

d ln cO/P

d lnw/r
θτEτdT (τ)
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The second term can be simplified by factoring out d ln cO/P
d lnw/r and using (1−svτ )θτ = (1−sMτ )(1−svτ )zτ

(1−sM )
∫
zτ̃Eτ̃dT (τ)

=

(1−sMτ )cOfO

(1−sM )
∫
zτ̃Eτ̃dT (τ)

:

∫
(ατ − α)(1− svτ )θτEτdT (τ) =

cOfO

(1− sM )
∫
zτ̃Eτ̃dT (τ)

∫
(ατ − α)(1− sMτ )EτdT (τ)

=
cOfO

∫
EτdT (τ)

(1− sM )
∫
zτ̃Eτ̃dT (τ)

∫
(ατ − α)(1− sMτ )EτdT (τ)∫

EτdT (τ)

=
(1− sv)
(1− sM )

∫
(ατ − α)(1− sMτ )EτdT (τ)∫

EτdT (τ)

Finally, we show that if entry costs are denominated in final output, then αM ≡ d lnP/w
d lnw/r = α,

as in the baseline model.

Proposition H.2 Suppose that entry costs are denominated in final output. Then αM ≡ d lnP/w
d lnw/r =

α.

Proof. Since yτ = cvτY P
ε
(

ε
ε−1c

v
τ

)−ε
, free entry implies

PfE =

∫
max

{
1

ε− 1
cvτyτ − cOτ fO, 0

}
EτdT (τ)

=

∫
max

{
1

ε− 1
cvτY P

ε

(
ε

ε− 1
cvτ

)−ε
− cOτ fO, 0

}
EτdT (τ)

Dividing by P , differentiating with respect to w/r, and using the fact that dEτ
d lnw/r 6= 0 implies that

the plant is at the margin of entering so that 1
ε−1c

v
τY P

ε
(

ε
ε−1c

v
τ

)−ε
− cOτ fO = 0, gives

0 =

∫ [
1

ε− 1

(
ε

ε− 1

)−ε
Y (P/cvτ )ε−1 d lnY (P/cvτ )ε−1

d lnw/r
− cOτ
P
fO

d ln cOτ /P

d lnw/r

]
EτdT (τ)

=

∫ [
1

ε− 1
svτ

d lnY (P/cvτ )ε−1

d lnw/r
− (1− svτ )

d ln cOτ /P

d lnw/r

]
zτ
P
EτdT (τ)

Since the elasticity holds Y constant, we can rearrange this and use Lemma H.1 to get

0 =

∫ [
svτ

d ln cvτ/P
d lnw/r + (1− svτ ) d ln cOτ /P

d lnw/r

]
zτEτdT (τ)

−
∫

(1− sMτ )zτEτdT (τ)

=

∫ [
−(1− sMτ )(ατ − αM )

]
zτEτdT (τ)

−
∫

(1− sMτ )zτEτdT (τ)

=

∫
(ατ − αM )θτEτdT (τ)

= α− αM
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Corollary 2 Suppose that overhead costs use final output. Then

σagg = (1− χ)σ̄ +

∫
ατ − α
α(1− α)

θτ
dEτ

d lnw/r
dT (τ) + χ(1− s̄M )ζ̄ + χ(1− s̄M )ε

Proof. This follows from noting that if the overhead cost is denominated in final output, d ln cO/P
d lnw/r =

0.

Corollary 3 Suppose that overhead costs use labor and entry costs use final output. Then

σagg = (1− χ)σ̄ +

∫
ατ − α
α(1− α)

θτ
dEτ

d lnw/r
dT (τ) + χ(1− s̄M )ζ̄ + χ(1− s̄M )ε

+ε
1− sv

(1− α)(1− sM )

∫
(ατ − α)(1− sMτ )EτdT (τ)∫

EτdT (τ)
(H.8)

Proof. This follows from noting that if the overhead cost is denominated in labor so that cO = w,

then d ln cO/P
d lnw/r = 1− (1− αM ) = α.

For the case in which overhead costs use labor, we can bound the extra term in (H.8). First,
note that since entry cost are in labor, 1−sv

(1−α)(1−sM )
∈ [0, 1] because the numerator is the share of

total expenditure spent on overhead costs and the denominator is the share of total expenditure on
labor spent on labor. Second, in our data, ατ and 1−sMτ are uncorrelated, so we can express this as∫

(ατ−α)(1−sMτ )EτdT (τ)∫
EτdT (τ)

=
(∫

ατEτdT (τ)∫
EτdT (τ)

− α
)(

1−
∫
sMτ EτdT (τ)∫
EτdT (τ)

)
. Since larger plants tend to be more

capital intensive, this is negative. However given the magnitude of the difference between the aver-
age and aggregate capital shares and the magnitude of materials shares, this term is quantitatively
small.

Corollary 4 Suppose that overhead costs use a plant’s own output. Then

σagg = (1− χ)σ̄ +

∫
ατ − α
α(1− α)

θτ
dEτ

d lnw/r
dT (τ) + χ(1− s̄M )ζ̄ + χ(1− s̄M )s̄vε

where s̄v ≡
∫

(ατ−α)(ατ−αM )(1−sMτ )θτEτ svτdT (τ)∫
(ατ−α)(ατ−αM )(1−sMτ )θτEτdT (τ)

is a weighted average of plants’ shares of variable costs.

In addition, define ε̂τ so that plant τ ’s ratio of revenue to cost is ε̂τ
ε̂τ−1 = pτyτ

cvτyτ+cOτ f
O . Then svτε ≤ ε̂τ .

Proof. If overhead costs use a plant’s own output, then

d ln cvτ/P

dlnw/r
=

d ln cOτ /P

dlnw/r
= (1− sMτ )(1− ατ ) + sMτ (1− αM )− (1− αM ) = −(1− sMτ )(ατ − αM )

The results follows from plugging this into (H.3) and using the definition of s̄v. In addition plant
τ ’s ratio of revenue to cost is

ε̂τ
ε̂τ − 1

=
ε
ε−1c

v
τyτ

cvτyτ + cOτ f
O

=
ε

ε− 1
svτ ,

This can be rearranged as

ε̂τ =
ε
ε−1s

v
τ

ε
ε−1s

v
τ − 1

=
εsvτ

1− ε (1− svτ )
> εsvτ
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H.3 Interpreting Cross-sectional Estimates

This section shows both analytically and using a Monte Carlo simulation that, to a first order,
our baseline estimate of the micro elasticity of substitution captures changes in the plant-level
capital shares coming from both the intensive and extensive margins of adjustment: within-plant
substitution and changes from entry and exit. This allows us to connect our baseline estimate to
the first two terms of (H.1):∫

dατ
d lnw/r

θτEτdT (τ) +

∫
dEτ

d lnw/r
(ατ − α)θτdT (τ) ≈ α(1− α)(1− χ)(ˆ̄σ − 1),

where ˆ̄σ is derived from the estimate of the cross-sectional micro elasticity (C.1).
Consider next estimating (C.4) using OLS in an environment with entry and exit. Let Ĩ be the

set of potential entrants: those that pay the entry cost, whether or not they pay the fixed operating
cost. The OLS estimator yields

β̂E =

∑
i∈Ĩ
(
ωcz(i) − ω̄

)
Ei (αi − ᾱ)∑

i∈Ĩ
(
ωcz(i) − ω̄

)2
Ei

=

∑
i∈Ĩ
(
ωcz(i) − ω̄

)
Ei (αi − α)∑

i∈Ĩ
(
ωcz(i) − ω̄

)2
Ei

where the constants ᾱ ≡
∑
i∈Ĩ Eiαi∑
i∈Ĩ Ei

and ω̄ ≡
∑
i∈Ĩ Eiωcz(i)∑

i∈Ĩ Ei
.

Consider the function αi(ω) and Ei(ω), which are what i’s capital share and operating status
would be with relative factor prices ω so that, abusing notation, αi = αi

(
ωcz(i)

)
and Ei = Ei(ωcz(i)).

A first order approximation of Ei(ω̄) (αi(ω̄)− α) around ωcz(i) yields

Ei (αi − α) =Ei(ωcz(i))
(
αi
(
ωcz(i)

)
− α

)
≈Ei(ω̄) (αi(ω̄)− α) + Ei

dαi(ωcz(i))

dω
(ωcz(i) − ω̄)

+
dEi(ωcz(i))

dω
(αi − α)(ωcz(i) − ω̄) +O

((
ωcz(i) − ω̄

)2)
Combining these equations and rearranging yields

β̂E ≈
∑
i∈Ĩ

θiEi
dαi
dω

+
∑
i∈Ĩ

θi
dEi
dω

(αi − α)

+
∑
i∈Ĩ

(
(ωcz(i) − ω̄)2∑

ĩ∈Ĩ(ωcz(̃i) − ω̄)2Eĩ
− θi

)(
dEi
dω

(αi − α) + Ei
dαi
dω

)

+

∑
i

(
ωcz(i) − ω̄

)
Ei (αi(ω̄)− α)∑

i

(
ωcz(i) − ω̄

)2
Ei

The first two terms are exactly the terms needed to use in the formula to recover the aggregate
elasticity. The next two terms represent potential sources of bias. The third term reflects the fact
that weights on each observation used by OLS are different from the ones needed for aggregation.
As discussed above in Web Appendix C.4 (and as we confirm in the Monte Carlo below) the bias
from this term is negligible. We now argue that the final term is likely to be positive, leading to
an upward bias, i.e., the estimate will tend to overstate σ̄. The argument is almost identical to the
one discussed above in Web Appendix C.4 when we studied a regression of capital shares on local
factor prices weighting by θi. Here, we instead weight by Ei. Since Ei is monotonically related to
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θi, the argument is the same. Recall that larger plants tend to have higher capital shares, even
within narrowly defined industries. Thus we expect

∑
Ei (αi (ω̄)− ᾱ) > 0. An increase in ω raises

Ei more when αi(ω̄) is larger, i.e., when (αi (ω̄)− α) is larger. Thus the positive covariance would
be strengthened. Conversely, a reduction in ω weakens the covariance. Together, these imply that
the final term is likely to be positive.

H.4 Foregone Labor

Claim H.1 Our baseline estimate corresponds to σ̂agg:

σ̂agg = (1− χ̂)ˆ̄σ + χ̂
[
ˆ̄sM ˆ̄ζ + (1− ˆ̄sMτ )ε̂

]
Proof. A plant’s measured expenditure on capital and labor as a fraction of the aggregate measured
expenditure is

θ̂τ ≡
(1− ŝMτ )cvτyτ∫

(1− ŝMτ̃ )cvτ̃yτ̃Eτ̃dT (τ̃)
.

The measured aggregate capital share is α̂ =
∫
α̂τ θ̂τEτdT (τ) and, as in our baseline, differentiating

yields

dα̂

d lnw/r
=

∫
dα̂τ

d lnw/r
θ̂τEτdT (τ) +

∫
(α̂τ − α̂)θ̂τ

dEτ
d lnw/r

dT (τ) +

∫
(α̂τ − α̂)

d ln θ̂τ
d lnw/r

θ̂τEτdT (τ)

By definition, σ̂agg − 1 = 1
α̂(1−α̂)

dα̂
d lnw/r . As in the last section, the sum of the first two terms is∫

dα̂τ
d lnw/r θ̂τEτdT (τ) +

∫
(α̂τ − α̂)θ̂τ

dEτ
d lnw/rdT (τ) = α̂(1− α̂)(1− χ̂)(ˆ̄σ−1). Therefore it remains only

to show that
∫

(α̂τ − α̂) d ln θ̂τ
d lnw/r θ̂τEτdT (τ) = α̂(1− α̂)χ̂

[
ˆ̄sM (ˆ̄ζ − 1) + (1− ˆ̄sM )(ε̂− 1)

]
. Note that

∫
(α̂τ−α̂)

d ln θ̂τ
d lnw/r

θ̂τEτdT (τ) =

∫
(α̂τ−α̂)

d ln(1− ŝMτ )

d lnw/r
θ̂τEτdT (τ)+

∫
(α̂τ−α̂)

d ln cvτyτ
d lnw/r

θ̂τEτdT (τ)

The argument that
∫

(α̂τ − α̂)d ln(1−ŝMτ )
d lnw/r θ̂τEτdT (τ) = α̂(1− α̂)χ̂ˆ̄sM (ˆ̄ζ − 1) is exactly the same as in

the previous section. Since cvτyτ = cvτY P
ε
(

ε
ε−1c

v
τ

)−ε
, we have∫

(α̂τ − α̂)
d ln cvτyτ
d lnw/r

θ̂τEτdT (τ) =

∫
(α̂τ − α̂)(1− ε)d ln cvτ/r

d lnw/r
θ̂τEτdT (τ)

= (1− ε)
∫

(α̂τ − α̂)
[
(1− ŝMτ )(1− α̂τ ) + ŝMτ (1− αM )

]
θ̂τEτdT (τ)

= (ε− 1)

∫
(α̂τ − α̂)

[
(1− ŝMτ )(α̂τ − αM )

]
θ̂τEτdT (τ)

= (ε− 1)(1− ˆ̄sMτ )χ̂

Lastly, since overhead costs are not observed, ε̂
ε̂−1 = pτyτ

cτyτ
= ε

ε−1 .

Claim H.2

σagg − σ̂agg =

d ln(1−ŝM )
d lnw/r + α̂(1− σ̂agg)

1 + (1− α̂)(1− ŝM )(ε− 1)

60



Proof. Define B ≡ 1−ŝM
1
ε−1

+(1−ŝM )
so that α = Bα̂. Taking logs and differentiating, then using

σagg − 1 = 1
α(1−α)

dα
d lnw/r and σ̂agg − 1 = 1

α̂(1−α̂)
dα̂

d lnw/r yields

1

α

dα

d lnw/r
=

d lnB

d lnw/r
+

1

α̂

dα̂

d lnw/r

(1− α)(σagg − 1) =
d lnB

d lnw/r
+ (1− α̂)(σ̂agg − 1)

This can be rearranged as

σagg − σ̂agg =
1

1− α
d lnB

d lnw/r
+
α̂− α
1− α

(1− σ̂agg)

=
1−B
1− α

(
d ln B

1−B
d lnw/r

+ α̂ (1− σ̂agg)

)

B
1−B = (ε− 1)(1− ŝM ) implies

d ln B
1−B

d lnw/r = d ln(1−ŝM )
d lnw/r . To complete the proof, we have

1− α
1−B

=
1−Bα̂
1−B

=
1− (1−ŝM)

1
ε−1

+(1−ŝM )
α̂

1− (1−ŝM )
1
ε−1

+(1−ŝM )

= 1 + (1− α̂)
(
1− ŝM

)
(ε− 1)

H.5 Monte Carlo

We next confirm these arguments using a Monte Carlo exercise. We simulate an economy with 700
locations that each contain 100 plants. We normalize the rental rate to 1 and draw the natural
log of each location’s wage from a uniform (0,1) distribution. We assume that each plant produces
using the CES production technology

Yi =
1

ββ (1− β)1−β

[
ρ

1
φ (AiK)

φ−1
φ + (1− ρ)

1
φ (BiL)

φ−1
φ

] φ
φ−1

β

M1−β

with an elasticity of substitution between capital and labor of 0.35, returns to scale ε of 4, and
capital-labor aggregate output elasticity β of 0.3. We also draw technology parameters Ai and Bi
from a joint lognormal. We normalize the mean of Ai to 1, and choose the mean of Bi, the variances
of Ai and Bi as well as their covariance to match the following four moments: an aggregate capital
share of 0.3, a value of χ of 0.1, the 90-10 ratio of marginal cost across plants to 2.7, and the
coefficient of a regression of log( αi

1−αi ) on log θi (weighting by θi) of 0.08.15

We examine two parameterizations of the entry cost and overhead operating cost; in the first,
both the entry cost and overhead cost are paid in materials with materials price P . In the second,

15Figure 5 depicts the aggregate share for the manufacturing sector over time, and Figure 1 values of χ
across industries. Table 1 in Syverson (2004) examines dispersion in productivity (our value corresponds to
the 90-10 ratio in TFP computed using plant specific input elasticities). Table 3 in Raval (2019) reports the
coefficient of regressions of the capital share to labor share ratio on value added, weighting by value added,
with estimates ranging from 0.05 to 0.09 using the Census of Manufactures across years, and 0.06 to 0.11
using the Annual Survey of Manufactures.
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both the entry cost and fixed cost are paid in unobserved local labor. For both sets of simulations,
the ratio of the entry cost to the operating cost matters, but not their levels.

All firms pay the entry cost, and operate if their sales net of variable costs cover the operating
cost. Given free entry, expected profits from entering are zero.

We then run 100 simulations for each parameterization of the entry cost and operating cost, for
a ratio of the entry cost to operating cost of 2.5 to 1, 5 to 1, and 10 to 1. Table H.1 contains these
estimates. Column (2) reports the true aggregate elasticity σagg: we simulate all firms’ actions
after increasing or decreasing wages in all localities by 5%, and compute the aggregate elasticity
by finite difference. Columns (3) and (4) report the estimated micro elasticity σ̂ and estimated
aggregate elasticity σ̂agg using our baseline cross-sectional regression approach and our aggregation
framework. Column (5) reports an alternative estimate of the aggregate elasticity computed using
a cross-sectional regression across locations where the dependent variable is the aggregate capital
share in each location.

Using the parameterization where both fixed costs are in materials, our baseline estimate of
the aggregate elasticity overstates the true aggregate elasticity by, on average, 0.15. Our baseline
estimate of the micro elasticity is substantially above the true micro elasticity, and typically only
slightly lower than the true aggregate elasticity.

Using the parameterization where both fixed costs are in unobserved labor, our baseline estimate
of the aggregate elasticity also overstates the true aggregate elasticity, although the bias is smaller
when operating costs shrink relative to entry costs. For example, the baseline estimate of the
aggregate elasticity is about 0.3 larger than the true elasticity when entry costs are 2.5 times
operating costs, but only 0.1 larger when entry costs are 10 times operating costs.

For both parameterizations, the alternative estimate of the aggregate elasticity from a cross-
sectional regression of aggregate capital share from each location on the local wage is very close to
the true aggregate elasticity. This specification mirrors those estimated in Appendix E.2; in that
section, we used this alternative approach for each industry (4 digit SIC or 6 digit NAICS level)
and found that the resulting estimates were fairly close to the average industry elasticity using of
our baseline aggregation approach.

I Adjustment Frictions and Distortions

Section 2 showed that the relative importance of within-plant substitution and reallocation de-
pends upon the variation in cost shares of capital. In that environment, this variation came from
non-neutral differences in technology. On the other hand, as the recent misallocation literature
emphasizes, some of this heterogeneity may be due to adjustment costs or other distortions. What
are the implications for the aggregate elasticity of substitution if differences in capital shares came
from distortions?

In Web Appendix I.1 we summarize our overall approach to characterizing the aggregate elastic-
ity in environments with misallocation, and summarize our findings. The remainder of the section
provides more detailed analytical and quantitative results. Web Appendix I.2 derives a general
expression for the aggregate elasticity. Web Appendix I.3 studies exogenous distortions inspired
by Hsieh and Klenow (2009). Web Appendix I.4 and Web Appendix I.5 provide analytical results
for capital adjustment frictions, and Web Appendix I.6 uses Monte Carlo simulations to gauge the
magnitude of the bias of our baseline estimates.
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Table H.1 Monte Carlo Estimates of Substitution Elasticity with Entry

Ratio, Entry to Operating Cost σagg σ̂ σ̂agg Aggregate Regression

Entry and Operating Costs in Materials
2.5 to 1 0.56 0.57 0.72 0.58
5 to 1 0.60 0.57 0.75 0.60
10 to 1 0.63 0.56 0.77 0.62

Entry and Operating Costs in Unobserved Labor
2.5 to 1 0.60 0.84 0.93 0.63
5 to 1 0.60 0.69 0.79 0.55
10 to 1 0.60 0.57 0.69 0.51

Note: The table contains six specifications based on 100 simulations with two different parameter-
izations of entry and operating costs – in terms of materials or unobserved labor – and three values
of the ratio of entry cost to operating cost: 2.5 to 1, 5 to 1, and 10 to 1. For each, we report the true
aggregate elasticity by resolving all plants’ actions in response to a 5% nationwide increase and 5%
nationwide decrease in wages and estimating the elasticity through the finite difference (σagg); our
baseline estimates of the micro elasticity from a regression of plants’ log of the ratio of capital cost
to labor cost on the log local wage (σ̂); our baseline estimates of the aggregate elasticity using the
estimated micro elasticity and our baseline formula (σ̂agg); and estimates of the aggregate elasticity
using a regression of each location’s log of the ratio of aggregate capital cost to aggregate labor cost
on the log local wage.

I.1 Approach and Findings

General Framework To answer this question, we first characterize the aggregate elasticity in
terms of how plants change their input expenditures in response to permanent changes in factor
prices. Unlike Section 2, we do not assume plants choose inputs solely to minimize their cost.

To examine how each plant’s input use would change with factor prices, we identify each plant
with a history of shocks, h, which include shocks to demand and productivity. Let H(h) be the
distribution of histories, so the aggregate capital share is α =

∫
αhθhdH(h). We define σh and

ζh as the local response of plant h’s relative factor expenditures to a change in factor prices, so

σh − 1 ≡
d ln

αh
1−αh

d lnw/r and (αM − αh)(ζh − 1) =
d ln

sMh
1−sM

h
d lnw/r . We make no assumption about how these

objects are related to h’s production function; σh and ζh simply reflect how h’s choices would
change with different factor prices.

Following exactly the steps of Section 2.1, differentiating each side of α =
∫
αhθhdH(h) =∫

αh
1−sMh
1−sM

zh
z dH(h) for zh

z ≡
rKh+wLh+qMh
rK+wL+qM and rearranging yields

σagg − 1 = (1− χ)(σ̄ − 1) + χs̄M (ζ̄ − 1) +

∫
h

(αh − α)θh
α(1− α)

d ln zh/z

d lnw/r
dH(h)

where σ̄, ζ̄, χ, and s̄M are defined as before.
In Section 2, we used Shephard’s Lemma to characterize d ln zh/z

d lnw/r . Here, we do not presume that
Kh, Lh, and Mh minimize the plant’s static cost, so we cannot make use of the envelope theorem.
Instead, differentiating zh with respect to relative factor prices and rearranging yields:

σagg = (1− χ)σ̄ + χs̄M ζ̄ +

∫
(αh − α) θh
α (1− α)

[
sKh

d lnKh

d lnw/r
+ sLh

d lnLh
d lnw/r

+ sMh
d lnMh

d lnw/r

]
dH(h). (I.1)

63



where sKh , sLh , and sMh are plant h’s respective cost shares of capital, labor and materials.
Our long-run cross-sectional estimates of the elasticity of substitution yield estimates of σ̄ and ζ̄;

those estimates capture how plants adjust their relative factor expenditures in response to changes
in factor prices, however these expenditures are chosen. As a result, the difference between our
baseline estimate σ̂agg and the true underlying aggregate elasticity is:

σ̂agg − σagg = (1− s̄M )χε−
∫

(αh − α) θh
α(1− α)

[
sKh

d lnKh

d lnw/r
+ sLh

d lnLh
d lnw/r

+ sMh
d lnMh

d lnw/r

]
dH(h). (I.2)

Exogenous Wedges We first study an environment motivated by Hsieh and Klenow (2009)
and Restuccia and Rogerson (2008) in which plants behave as if there are plant-specific taxes
on each input. While plant i’s cost of capital, labor, and intermediate inputs are r, w, and q,
respectively, it behaves as if these costs were (1+τKi)r, (1+τLi)w, and (1+τMi)q. We assume that
the distortions themselves do not change with relative factor prices. In that case, the aggregate
elasticity of substitution σagg is our baseline estimate σ̂agg plus a distortion term:

σagg = σ̂agg +
∑
i

(αi − α) θi
α(1− α)

[
X1
i (ε− σi) +X2

i (ε− ζi)
]
,

where

X1
i ≡ (1− sMi )αi (1− αi)

τKi − τLi
(1 + τKi)

(
1− sMi

)
αi + (1 + τLi)

(
1− sMi

)
(1− αi) + (1 + τMi)sMi

X2
i = (αi − α)sMi (1− sMi )

αiτKi + (1− αi)τLi − τMi

(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi ) (1− αi) + (1 + τMi)sMi
.

We use a perturbation approach to further characterize how misallocation affects the aggregate
elasticity. The perturbation parameter ν refers to an economy in which the wedges are 1 + ντKi,
1 + ντLi, and 1 + ντMi. Thus, a frictionless economy corresponds to ν = 0, while the economy
with misallocation corresponds to ν = 1. Taking a first order approximation around ν = 0, the
difference between the our baseline estimate of the aggregate elasticity for the manufacturing sector
and the true underlying elasticity is

σagg − σ̂agg ≈
∑
i

(α∗i − α∗)θ∗i
α∗(1− α∗)

{
α∗i (1− α∗i )(τKi − τLi)(ε− σ∗i )

+ [α∗i τKi + (1− α∗i )τLi − τMi] s
M∗
i (1− sM∗i )(α∗i − α∗)(ε− ζ∗i )

}
,

where variables with stars are the values in the undistorted economy with ν = 0.
If all dispersion in factor shares were due to wedges rather than to changes in technology, so α∗i =

α∗, to a first order approximation, our baseline estimate would recover the true aggregate elasticity.
In order to proceed beyond this special case, we must model specific mechanisms through which
endogenous wedges would covary with plants’ technologies and with factor prices. We therefore
turn to explicit models of adjustment costs.

Adjustment Costs In this section we study a class of capital adjustment frictions that nests
time-dependent frictions such as Calvo (1983) and Taylor (1980) as well as time-to-build adjustment
frictions. Formally, we parameterize capital adjustment frictions by

{
Γ̄j
}∞
j=0

. If a plant is able to

choose capital freely in period t, Γ̄j is the probability that that choice determines capital in period
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t+j.16 The fraction of plants in the cross-section whose usage of capital was determined by a choice

made j periods ago is Γj ≡ Γ̄j∑∞
j′=0 Γ̄j′

. A plant with technology τ can produce with the production

function F (·; τ). We assume that τ follows a Markov process with a stationary distribution T (τ).
We also assume initial conditions are such that the each plant’s time since last adjustment, j, is
independent of its technology, τ .

To make progress, we make two simplifications: First, we assume that plants do not discount
the future, which we believe is a reasonable approximation given the horizon of adjustment fric-
tions. Second, we assume that plants with technology τ produce with the CES production function

F (K,L; τ) ≡
[
(AτK)

σ−1
σ + (BτL)

σ−1
σ

] σ
σ−1

.

Plants may choose capital only occasionally, so a decision today may determine future input
usage. Without adjustment frictions, a plant would tailor its inputs to match its technology and
demand period by period. With adjustment frictions, a plant can only match its capital to its
shocks in expectation. This difference will affect how plants’ scales change with a change in relative
factor prices.

Thus, a plant’s choice of capital satisfies Et
[∑∞

j=0 Γj(MRPKi,t+j − r)
]
, where MRPKi,t+j is

i’s marginal revenue product of capital, whereas its choice of labor is a static decision that satisfies
MRPLi,t+j = w. To find how plants’ input usage changes with relative factor prices, we can simply
differentiate these equation with respect to relative factor prices.

In this context, we show in Web Appendix I.3 that the difference between our baseline estimate
and the true elasticity of substitution can be expressed as

σagg − σ̂agg =

∫
x(τ)

rK(τ)

rK + wL
dT (τ) (I.3)

where T (τ) is the cross-sectional distribution of technology states and x(τ) is, for a plant that has
technology τ when it chooses its capital, the probability-weighted covariance of its realized capital
share α(τt+j ; τt) with the sensitivity of scale in that state to long-run factor prices b(τt+j ; τt) over
the horizon over which that choice is in effect:17

x(τ) ≡ Et

 ∞∑
j=0

Γj (α(τt+j ; τt)− ᾱ(τt))

(
b(τt+j ; τt)

b̄(τt)
− 1

)∣∣∣∣ τt = τ

 (I.4)

Compared to our baseline model, the model with adjustment costs makes different inferences
about how plants’ scale changes when factor prices change, given the same data. In the baseline
model, Shephard’s Lemma implies that the change in a plant’s scale when the cost of capital falls is

16For Calvo-style adjustment frictions for which ν is the probability that a plant is able to adjust each
period, Γ̄j = (1−ν)j . For Taylor-style adjustment frictions in which capital can be adjusted every j∗ periods,
Γ̄j = 1 {j < j∗}. For time-to-build adjustment frictions in which capital chosen today will not be operational
j∗ periods later, Γ̄j = 1 {j = j∗}

17The realized capital share is α(τt+j ; τt) ≡ rK(τt)
rK(τt)+wL(τt+j ,K(τt))

. Web Appendix I.3 shows

that the sensitivity of the scale to long-run factor prices b(τt+j ; τt) ≡
( εσ−1)

α̃(τt+j ,τt)

α(τt+j ,τt)
+1

( εσ−1)α̃(τt+j ,τt)+1
, where

α̃(τt+j , τt) ≡
(Aτt+jK(τt))

σ−1
σ

(Aτt+jK(τt))
σ−1
σ +(Bτt+jL(τt+j ,K(τt)))

σ−1
σ

is the shadow capital share of the state. ᾱ(τ) =∑∞
j=0 ΓjEt [α(τt+j ; τt)| τt = τ ] and b̄(τ) ≡

∑∞
j=0 ΓjEt [b(τt+j ; τt)| τt = τ ] are the probability-weighted av-

erages of α and b over the spell of non-adjustment.
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proportional to its actual capital share. Thus variation in capital shares in the cross section reflects
scope for reallocation across plants in response to changes in factor prices.

With adjustment costs, the variation in capital shares in the cross-section can be decomposed
into variation within non-adjustment spells and variation across non-adjustment spells. Like in
the baseline model, the variation across spells measures the scope for reallocation: a permanent
increase in the relative cost of labor causes plants that expect to be more capital intensive to choose
capital at the beginning of the spell and to choose labor during the spell so that they expand more,
on average, than plants that expect to be labor intensive. In contrast, a plant is limited in how it
can reallocate resources from capital-intensive states to labor-intensive states within a spell.

If shocks tend to be Hicks-neutral, we can show analytically that x(τ) < 0 for all τ . That is,
given the same data, the model with adjustment frictions infers less scope than the baseline model
for reallocation between capital-intensive and labor intensive plants/states. If shocks are non-
neutral, it is possible that x(τ) can be positive for some τ . For example, if shocks tend to be purely
capital augmenting, plants that expect to be extremely labor intensive (ᾱ(τ) < 0.15) will make
choices of labor that are sufficiently different across states that the model with adjustment costs
infers more scope for reallocation than the baseline model. We cannot measure b(τt+j , τt) directly
because we cannot observe the bias of technology. Therefore, to assess the sign of the overall bias,
we examine four scenarios: shocks are purely Hicks-neutral; shocks are purely labor-augmenting;
shocks are purely capital-augmenting; shocks to A and B are perfectly negatively correlated. For
each we take a second-order approximation of each x(τ) around a fixed-technology benchmark, and
approximate the distribution of ᾱ(τ) using the empirical distribution of capital shares. As we detail
in Appendix I.3, the actual aggregate elasticity would be lower than our baseline estimate in all
four cases.

The magnitude of the bias is increasing in the within-spell variation in technology. To gauge the
magnitude, we posit that cross-sectional distribution of technology was generated by an autoregres-
sive process. As an upper bound, we study case in which technology has no persistence—the IID
case—which maximizes within-spell variation in technology. In that case, the difference between
our baseline estimate and the true aggregate elasticity is 0.026.

Plant-Specific Prices Lastly, we consider an environment in which plants pay idiosyncratic
prices for their inputs. Formally, plant i pays factor prices ri = (1 + τKi)r, wi = (1 + τLi)w,
and qi = (1 + τMi)q, where the plant-specific input-price premium might reflect compensating
differentials or supplier markups. For example, our identification of the plant-level elasticity of
substitution relies on plants in different locations facing different wages. We define the aggregate
elasticity of substitution as how factor shares respond to relative factor prices18:

σagg − 1 =
d ln α

1−α
d lnw/r

where α ≡
∑
i riKi∑

i riKi+wiLi
and the derivative is taken holding fixed the input price premia, {τKi, τLi, τMi}.

In this context, the aggregate elasticity of substitution is exactly the same as our baseline
expression in Proposition 1, provided that we define the shares in terms of factor payments that
include plant-specific prices. Thus, as long as expenditures are measured correctly, no modifications
are necessary.

18In this environment, changes in the capital-labor ratio do not map directly into changes in factor com-

pensation, so d lnK/L
d lnw/r − 1 6= d ln α

1−α
d lnw/r .
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I.2 Proofs for General Framework

We begin by deriving an expression for the aggregate elasticity. We identify with each plant a
history of shocks, h. The plant’s usage of capital, labor, and materials, Kh, Lh, and Mh, are
measurable with respect to this history, and may or may not reflect choices made in the past. Let
H(h) be the distribution of histories. These determine the plant’s capital share, αh ≡ rKh

rKh+wLh
and

share of expenditures, θh ≡ rKh+wLh
rK+wL . Similarly, define sKh ≡

rKh
rKh+wLh+qMh

, sLh ≡
wLh

rKh+wLh+qMh
,

and sMh ≡
qMh

rKh+wLh+qMh
to be plant h’s expenditure on each input as a share of its cost, as well as

zh
z ≡

rKh+wLh+qMh
rK+wL+qM to be its expenditure on inputs as a share of total expenditure.

The aggregate capital share is α =
∫
αhθhdH(h). The long-run elasticity of substitution is

σagg − 1 ≡ d ln α
1−α

d lnw/r = 1
α(1−α)

dα
d lnw/r . In addition, define σh ≡

d ln
αh

1−αh
d lnw/r = 1

αh(1−αh)
dαh

d lnw/r to be the
change in plant h’s relative factor expenditures in response to a permanent change in factor shares.

Finally, define ζh to satisfy (αM − αh)(ζh − 1) =
d ln

sMh
1−sM

h
d lnw/r = − 1

sMh

d ln 1−sMh
d lnw/r . Note that σh and ζh

are defined as local behavioral elasticities, which may or may not correspond to the the curvature
locally and may reflect both the curvature of the production function and the history h. Following
exactly the steps of Section 2.1, the definitions of σagg and σh along with dα

d lnw/r =
∫ d[αhθh]

d lnw/rdH(h)
gives

α(1− α)(σagg − 1) =
dα

d lnw/r
=

∫ [
dαh

d lnw/r
θh + αh

dθh
d lnw/r

]
dH(h)

=

∫
αh(1− αh)

d ln αh
1−αh

d lnw/r
θhdH(h) +

∫
(αh − α)θh

d ln θh
d lnw/r

dH(h)

=

∫
αh(1− αh)(σh − 1)θhdH(h) +

∫
(αh − α)θh

d ln θh
d lnw/r

dH(h)

We also have θh =
1−sMh
1−sM

zh
z . This along with the definition of ζh implies∫

(αh − α)θh
d ln θh

d lnw/r
dH(h) =

∫
(αh − α)θh

(
d ln(1− sMh )

d lnw/r
+

d ln zh/z

d lnw/r

)
dH(h)

=

∫
(αh − α)θh

(
(αh − αM )sMh (ζh − 1) +

d ln zh/z

d lnw/r

)
dH(h)

Dividing by α(1− α) and using the definitions of χ, σ̄, ζ̄, and s̄M , we have

σagg − 1 = (1− χ)(σ̄ − 1) + χs̄M (ζ̄ − 1) +

∫
h

(αh − α)θh
α(1− α)

d ln zh/z

d lnw/r
dH(h)

We next find a simpler way to express the final term. We first note that

d ln zh/z

d lnw/r
=

d lnKh + w
r Lh + q

rMh

d lnw/r
−
d lnK + w

r L+ q
rM

d lnw/r

= sKh
d lnKh

d lnw/r
+ sLh

(
1 +

d lnLh
d lnw/r

)
+ sMh

(
1− αM +

d lnMh

d lnw/r

)
−
d lnK + w

r L+ q
rM

d lnw/r
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Plugging this into the integral yields

∫
(αh − α)θh
α(1− α)

d ln zh/z

d lnw/r
dH(h) =

∫
(αh − α)θh
α(1− α)

 sKh
d lnKh
d lnw/r + sLh

(
1 + d lnLh

d lnw/r

)
+sMh

(
1− αM + d lnMh

d lnw/r

)  dH(h)

Next, note that∫
(αh − α)θh
α(1− α)

[
sLh + sMh (1− αM )

]
dH(h)

=

∫
(αh − α)θh
α(1− α)

[
(1− sMh )(1− αh) + sMh (1− αM )

]
dH(h)

=

∫
(αh − α)θh
α(1− α)

(1− αh)dH(h) +

∫
(αh − α)θh
α(1− α)

[
αh − αM

]
sMh dH(h)

= −χ+ s̄Mχ

Together, these imply

σagg = (1− χ)σ̄ + χ(1− s̄M )ζ̄ +

∫
(αh − α) θh
α (1− α)

[
sKh

d lnKh

d lnw/r
+ sLh

d lnLh
d lnw/r

+ sMh
d lnMh

d lnw/r

]
dH(h)

I.3 Proofs for Implicit Taxes

The aggregate capital share can be expressed as a weighted average of the individual capital shares

α =
∑
i

αiθi =
∑
i

αi
1− sMi
1− sM

zi
z

(I.5)

where αi = rKi
rKi+wLi

, sMi = qMi

rKi+wLi+qMi
, and zi

z = rKi+wLi+qMi

rK+wL+qM are defined in terms of plant i’s
actual expenditures. We find the aggregate elasticity by differentiating with respect to relative
factor prices.

Claim I.1 In an environment with misallocation, the aggregate elasticity of substitution between
capital and labor is

σagg = σ̂agg +
∑
i

(αi − α) θi
α(1− α)

[
X1
i (ε− σi) +X2

i (ε− ζi)
]

where

σ̂agg ≡ χσ̄ + (1− χ)
[
s̄M ζ̄ +

(
1− s̄M

)
ε
]

X1
i ≡ (1− sMi )αi (1− αi)

τKi − τLi
(1 + τKi)

(
1− sMi

)
αi + (1 + τLi)

(
1− sMi

)
(1− αi) + (1 + τMi)sMi

X2
i = (αi − α)sMi (1− sMi )

αiτKi + (1− αi)τLi − τMi

(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi ) (1− αi) + (1 + τMi)sMi
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Proof. Differentiating (I.5) with respect to relative factor prices gives

dα

d lnw/r
=
∑
i

dαi
d lnw/r

θi +
∑
i

(αi − α) θi
d ln(1− sMi )

d lnw/r
+
∑
i

(αi − α) θi
d ln zi/z

d lnw/r

The aggregate elasticity of substitution satisfies σagg− 1 = 1
α(1−α)

dα
d lnw/r . The plant-level elasticity

of substitution between capital and labor satisfies σi = d lnKi/Li
d lnw/r , so that, as in the baseline, σi − 1

=
d ln

αi
1−αi

d lnw/r = 1
αi(1−αi)

dαi
d lnw/r . Similarly, we define the plant-level elasticity of substitution between

primary inputs and intermediates to satisfy (αi − αM )(1 − ζi) =
d ln

sMi
1−sM

i
d lnw/r , so that

d ln(1−sMi )
d lnw/r =

sMi (αi − αM )(ζi − 1). Using these expressions, the aggregate elasticity of substitution can be
expressed as

α(1− α)(σagg − 1) =
∑
i

αi(1− αi)(σi − 1)θi +
∑
i

(αi − α)θis
M
i (αi − αM )(ζi − 1)

+
∑
i

(αi − α)θi
α(1− α)

d ln zi/z

d lnw/r

Dividing through by α(1− α) and using the expression for σ̄, s̄M , and ζ̄, gives

σagg − 1 = (1− χ) (σ̄ − 1) + χs̄M
(
ζ̄ − 1

)
+
∑
i

(αi − α) θi
α(1− α)

d ln zi/z

d lnw/r
(I.6)

We now derive an expression for d ln zi/z
d lnw/r . Note that

zi
z

=
rKi + wLi + qMi

rK + wL+ qM
=

ε−1
ε PY

rK + wL+ qM

rKi + wLi + qMi
ε−1
ε PiYi

PiYi
PY

Using PiYi
PY = (Pi/P )1−ε = (Pi/r)

1−ε (r/P )1−ε, we have

zi
z

=
ε−1
ε PY (r/P )1−ε

rK + wL+ qM

rKi + wLi + qMi
ε−1
ε PiYi

(Pi/r)
1−ε

Then using the fact that for any constant ψ,
∑

i
(αi−α)θi
α(1−α) ψ = 0, we have

∑
i

(αi − α) θi
α (1− α)

d ln zi/z

d lnw/r
= (1− ε)

∑
i

(αi − α) θi
α (1− α)

d lnPi/r

d lnw/r
−
∑
i

(αi − α) θi
α(1− α)

d ln
ε−1
ε
PiYi

rKi+wLi+qMi

d lnw/r
(I.7)

For the first term, let Ci (r, w, q) be the unit cost function associated with i’s production technology.
Firm i’s optimal price is

Pi =
ε

ε− 1
Ci ((1 + τKi) r, (1 + τLi)w, (1 + τMi)q)
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Shephard’s lemma implies that

d lnPi/r

d lnw/r
=

d lnCi
(
(1 + τKi), (1 + τLi)

w
r , (1 + τMi)

q
r

)
d lnw/r

=
(1 + τLi)wCiw

Ci
+

d ln q/r

d lnw/r

(1 + τMi)qCiq
Ci

=
(1 + τLi)wLi

(1 + τKi)rKi + (1 + τLi)wLi + (1 + τMi)qMi

+
(
1− αM

) (1 + τMi)qMi

(1 + τKi)rKi + (1 + τLi)wLi + (1 + τMi)qMi

=
(1 + τLi)wLi + (1− αi)(1 + τMi)qMi

(1 + τKi)rKi + (1 + τLi)wLi + (1 + τMi)qMi

+
(
αi − αM

) (1 + τMi)qMi

(1 + τKi) rKi + (1 + τLi)wLi + (1 + τMi) qMi

Define X1
i and X2

i as

X1
i ≡ (1− αi)−

(1 + τLi)wLi + (1− αi)(1 + τMi)qMi

(1 + τKi)rKi + (1 + τLi)wLi + (1 + τMi)qMi

X2
i ≡ (αi − αM )sMi −

(
αi − αM

) (1 + τMi)qMi

(1 + τKi)rKi + (1 + τLi)wLi + (1 + τMi) qMi

Then ∑
i

(αi − α) θi
α (1− α)

d lnPi/r

d lnw/r
=

∑
i

(αi − α) θi
α(1− α)

[
(1− αi)−X1

i +
(
αi − αM

)
sMi −X2

i

]
= −

{(
1− s̄M

)
χ+

∑
i

(αi − α) θi
α(1− α)

(
X1
i +X2

i

)}
(I.8)

Note that we can derive more explicit expressions for X1
i and X2

i :

X1
i = (1− αi)−

(1 + τLi)wLi + (1− αi)(1 + τMi)qMi

(1 + τKi)rKi + (1 + τLi)wLi + (1 + τMi)qMi

= (1− αi)−
(1 + τLi)(1− sMi )(1− αi) + (1− αi)(1 + τMi)s

M
i

(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)sMi

= (1− αi)
{

1− (1 + τLi)(1− sMi ) + (1 + τMi)s
M
i

(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)sMi

}
= (1− sMi )αi(1− αi)

τKi − τLi
(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)sMi
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and

X2
i = (αi − αM )sMi − (αi − αM )

(1 + τMi)qMi

(1 + τKi)rKi + (1 + τLi)wLi + (1 + τMi)qMi

= (αi − αM )sMi − (αi − αM )
(1 + τMi)s

M
i

(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)sMi

= (αi − αM )sMi

{
1− (1 + τMi)

(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)sMi

}
= (αi − αM )sMi (1− sMi )

αiτKi + (1− αi)τLi − τMi

(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)sMi

For the second term, we have

d ln
ε−1
ε
PiYi

rKi+wLi+qMi

d lnw/r
=

d ln (1+τKi)rKi+(1+τLi)wLi+(1+τMi)qMi

rKi+wLi+qMi

d lnw/r

=
d ln

[
(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)s

M
i

]
d lnw/r

=

{ [
(1− sMi )(1 + τKi)− (1− sMi )(1 + τLi)

]
dαi

d lnw/r

− [(1 + τKi)αi + (1− αi)(1 + τLi)− (1 + τMi)]
dsMi

d lnw/r

}
(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)sMi

=
(1− sMi )(τKi − τLi) dαi

d lnw/r − [αiτKi + (1− αi)τLi − τMi]
dsMi

d lnw/r

(1 + τKi)(1− sMi )αi + (1 + τLi)(1− sMi )(1− αi) + (1 + τMi)sMi

Using dαi
d lnw/r = αi(1−αi)(σi−1) and

dsMi
d lnw/r = −sMi (1−sMi )(αi−αM )(ζi−1), this can be expressed

as

d ln
ε−1
ε
PiYi

rKi+wLi+qMi

d lnw/r
= X1

i (σi − 1) +X2
i (ζi − 1) (I.9)

Plugging (I.8) and (I.9) into (I.7) gives∑
i

(αi − α)θi
α(1− α)

d ln zi/z

d lnw/r
= (1− s̄M )χ(ε− 1) +

∑
i

(αi − α)θi
α(1− α)

[
X1
i (ε− σi) +X2

i (ε− ζi)
]

This along with (I.6) gives

σagg = σ̂agg +
∑
i

(αi − α)θi
α(1− α)

[
X1
i (ε− σi) +X2

i (ε− ζi)
]

We now use a perturbation approach to analyze this expression. Consider an economy indexed
by ν for which the wedges are (1 + ντKi), (1 + ντLi), and (1 + ντMi). The baseline economy
corresponds to ν = 0 while the economy with misallocation corresponds to ν = 1. We take a
first order approximation of σagg − σ̂agg by taking a Taylor expansion around ν = 0. Note that
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X1
i (0) = X2

i (0) = 0, and that

X1′
i (0) =

(
1− sM∗i

)
α∗i (1− α∗i ) (τKi − τLi)

X2′
i (0) = (α∗i − α∗) sM∗i

(
1− sM∗i

)
[α∗i τKi + (1− α∗i ) τLi − τMi]

We therefore have that, to a first order,

σagg(ν)− σ̂agg(ν) ≈ σagg(0)− σ̂agg(0) + σagg
′
(0)− σ̂agg′(0)

=
∑
i

X1
i (0)

d
{

(αi(ν)−α(ν))θi(ν)
α(ν)(1−α(ν)) (ε(ν)− σi(ν))

}
dν

∣∣∣∣∣∣
ν=0

+
∑
i

X2
i (0)

d (αi(ν)−α(ν))θi(ν)
α(ν)(1−α(ν)) (ε(ν)− ζi(ν))

dν

∣∣∣∣∣∣
ν=0

+
∑
i

(α∗i − α∗) θ∗i
α∗ (1− α∗)

[
X1′
i (0) (ε− σ∗i ) +X2′

i (0) (ε− ζ∗i )
]

=
∑
i

(α∗i − α∗) θ∗i
α∗ (1− α∗)

{ (
1− sM∗i

)
α∗i (1− α∗i ) (τKi − τLi) (ε− σ∗i )

+ (α∗i − α∗) sM∗i
(
1− sM∗i

)
[α∗i τKi + (1− α∗i ) τLi − τMi] (ε− ζ∗i )

}

I.4 Proofs for Adjustment Frictions

As discussed in the main text, capital adjustment frictions are parameterized by {Γ̄j}∞j=0, where Γ̄j
is the probability that a choice of capital made during period t determines capital used in period
t+ j. At the beginning of each period, uncertainty about both a plant’s technology and whether it
will be able to adjust capital is realized. It then chooses labor, materials, and, if feasible, capital,
and then produces.

A plant with technology τ uses the production function F (K,L; τ) ≡
[
(AτK)

σ−1
σ + (BτL)

σ−1
σ

] σ
σ−1

.

If a plant has technology τ0 and is able to choose capital, its choice maximizes expected profit over
the horizon of non-adjustment

max
K(τ0),{L(τj ;τ0)}∞j=0

E

 ∞∑
j=0

Γ̄j

{
PY 1/εF (K(τ0), L(τj ; τ0); τj)

ε−1
ε − rK(τ0)− wL(τj ; τ0)

}∣∣∣∣∣∣ τ0


The optimal choices of capital and labor satisfy

0 = E

 ∞∑
j=0

Γ̄j

{
PY

1
ε̃
ε̃− 1

ε̃
F (K(τ0), L(τj ; τ0); τj)

− 1
ε̃ FK (K(τ0), L(τj ; τ0); τj)− r

}∣∣∣∣∣∣ τ0


0 = PY

1
ε
ε− 1

ε
F (K(τ0), L(τj ; τ0); τj)

− 1
ε GL (K(τ0), L (τj ; τ0) ; τj)− w

Suppressing the arguments when not necessary for clarity, dividing the FOC for capital by
∑∞

j′=0 Γ̄j′ ,
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and using Γj ≡ Γ̄j∑∞
j′=0 Γ̄j′

, these are

0 =
∞∑
j=0

ΓjE
[
PY

1
ε
ε− 1

ε
F
− 1
ε

i FiK − r
∣∣∣∣ τ0

]
0 = PY

1
ε
ε− 1

ε
F
− 1
ε

i FiL − w

To characterize how choices of capital and labor change with permanent changes in factor prices,
we can simply differentiate these first order conditions. As we show in the lemma below, these
depend on the plant’s shadow capital share, α̃i ≡ KiFiK

Fi
.19 The following lemma summarizes the

result.

Lemma I.1 In response to a permanent change in factor prices, the change in scale for a plant
whose capital was chosen with technology τ0 and now has technology τj is

α(τj ; τ0)
d lnK(τ0)

d lnw/r
+ (1− α(τj ; τ0))

d lnL(τj ; τ0)

d lnw/r
=
b(τj ; τ0)

b̄(τ0)
α(τj ; τ0)ε− αε

where b(τj ; τ0) ≡
( εσ−1)

α̃(τj ;τ0)

α(τj ;τ0)
+1

( εσ−1)α̃(τj ;τ0)+1
and b̄(τ0) ≡ E

[∑∞
j=0 Γjb(τj ; τ0)

∣∣∣ τ0

]
.

Proof. We begin with a preliminary calculation. Using the fact that Fi is homogeneous of degree
one, we have

d ln
[
(Fi/Ki)

− 1
ε FiK

]
≡ d ln

[(
Fi (Ki, Li)

Ki

)− 1
ε

FiK (Ki, Li)

]
= d ln

[
Fi(1, Li/Ki)

− 1
εFiK (1, Li/Ki)

]
=

[
−1

ε

(Li/Ki)FiL(1, Li/Ki)

Fi(1, Li/Ki)
+

(Li/Ki)FiKL(1, Li/Ki)

FiK(1, Li/Ki)

]
d lnLi/Ki

= (1− α̃i)
[

1

ε
− 1

σ

]
d lnKi/Li

Similarly,

d ln
[
(Fi/Li)

− 1
ε FiL

]
= −α̃i

[
1

ε
− 1

σ

]
d lnKi/Li

Multiplying the capital FOC by
K

1/ε
i

PY 1/ε and the labor FOC by
L

1/ε
i

PY 1/ε gives

0 = E

 ∞∑
j=0

Γj
ε− 1

ε
(Fi/Ki)

− 1
ε FiK −

rK
1/ε
i

PY 1/ε


0 =

ε− 1

ε
(Fi/Li)

− 1
ε FiL −

wL
1/ε
i

PY 1/ε

19More formally, α̃(τj ; τ0) ≡ K(τ0)FK(K(τ0),L(τj ;τ0);τj)
F (K(τ0),L(τj ;τ0);τj)

.
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Differentiating the labor FOC with respect to factor prices gives

−α̃i
[

1

ε
− 1

σ

]
d lnKi/Li
d lnw/r

=
1

ε

d lnLi/Y

d lnw/r
+

d lnw/P

d lnw/r

Using d lnw/P
d lnw/r = α, we can rearrange this as

d lnKi/Li
d lnw/r

=

1
ε

d lnKi/Y
d lnw/r + α

(1− α̃i) 1
ε + α̃i

1
σ

(I.10)

Similarly, differentiating the capital FOC with respect to relative factor prices, multiplying

through by −PY 1/ε

rK
1/ε
i

, and using d ln r/P
d lnw/r = −(1− α) gives

0 =
∞∑
j=0

ΓjE

[
ε− 1

ε
(Fi/Ki)

− 1
ε FiK(1− α̃i)

(
1

ε
− 1

σ

)
d lnKi/Li
d lnw/r

−
rK

1/ε
i

PY 1/ε

(
1

ε

d lnKi/Y

d lnw/r
+

d ln r/P

d lnw/r

)]

=

∞∑
j=0

ΓjE

PY 1/ε ε−1
ε F

ε−1
ε

i

rKi

KiFiK
Fi

(1− α̃i)
(

1

σ
− 1

ε

)
d lnKi/Li
d lnw/r

+

(
1

ε

d lnKi/Y

d lnw/r
− (1− α)

)
Note that the FOC for labor is wLi = PY 1/ε ε−1

ε F
− 1
ε

i FiLLi = PY 1/ε ε−1
ε F

ε−1
ε

i (1− α̃i). Substituting
this in gives

0 =

∞∑
j=0

ΓjE
[
α̃i (1− αi)

αi

(
1

σ
− 1

ε

)
d lnKi/Li
d lnw/r

+
1

ε

d lnKi/Y

d lnw/r
− (1− α)

]

Plugging in the expression for d lnKi/Li
d lnw/r from above gives

0 =
∞∑
j=0

ΓjE

 α̃i(1− αi)
αi

(
1

σ
− 1

ε

) 1
ε

d lnKi/Y
d lnw/r + α

(1− α̃i)1
ε + α̃i

1
σ

+

(
1

ε

d lnKi/Y

d lnw/r
− (1− α)

)
Using

∑∞
j=0 Γj = 1, we can rearrange this as

1 =

∞∑
j=0

ΓjE

[(
α̃i(1−αi)

αi

(
1
σ −

1
ε

)
(1− α̃i) 1

ε + α̃i
1
σ

+ 1

)(
1

ε

d lnKi/Y

d lnw/r
+ α

)]

=

∞∑
j=0

ΓjE
[
bi

(
1

ε

d lnKi/Y

d lnw/r
+ α

)]

= b̄

(
1

ε

d lnKi/Y

d lnw/r
+ α

)
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Using this along with (I.10) gives

αi
d lnKi/Y

d lnw/r
+ (1− αi)

d lnLi/Y

d lnw/r
=

d lnKi/Y

d lnw/r
− (1− αi)

d lnKi/Li
d lnw/r

=
d lnKi/Y

d lnw/r
− (1− αi)

1
ε

d lnKi/Y
d lnw/r + α

(1− α̃i) 1
ε + α̃i

1
σ

= ε

(
1

b̄
− α

)
− 1

b̄

(1− αi)
(1− α̃i) 1

ε + α̃i
1
σ

= ε

(
bi
b̄
αi − α

)

With this, we can derive an expression for the aggregate elasticity of substitution. Note that
the share of plants in the cross section whose current choice of capital was determined j periods
ago is Γj . Further, among those plants, the distribution of technology states j periods ago is simply
the stationary distribution of technology, T (τ). Letting Tj(τj ; τ0) be the j-steps ahead conditional
distribution of technology, we can use (I.2) to express the difference between our baseline estimate
and the true elasticity, σ̂agg − σagg, is

∞∑
j=0

Γj

∫ ∫
(α(τj ; τ0)− α)θ(τj ; τ0)

α(1− α)

{
(α(τj ; τ0)− α)ε−

(
b(τj ; τ0)

b̄(τ0)
α(τj ; τ0)− α

)
ε

}
dTj(τj ; τ0)dT (τ0)

This can be rearranged as

∫
E

 ∞∑
j=0

Γj
(α(τj ; τ0)− α)θ(τj ; τ0)

α(1− α)

{
(α(τj ; τ0)− α)ε−

(
b(τj ; τ0)

b̄(τ0)
α(τj ; τ0)− α

)
ε

}∣∣∣∣∣∣ τ0

dT (τ0)

Or rearranged further as

σ̂agg − σagg = ε

∫
E

 ∞∑
j=0

Γj(α(τj ; τ0)− α)

(
1− b(τj ; τ0)

b̄(τ0)

)
α(τj ; τ0)θ(τj ; τ0)

α(1− α)

∣∣∣∣∣∣ τ0

dT (τ0)

Since α(τj ; τ0)θ(τj ; τ0) = rK(τ0)
rK+wL , this is

σ̂agg − σagg = ε

∫
E

 ∞∑
j=0

Γj(α(τj ; τ0)− α)

(
1− b(τj ; τ0)

b̄(τ0)

)∣∣∣∣∣∣ τ0

 rK(τ0)

rK + wL

1

α(1− α)
dT (τ0)

Finally, since 1 = E
[∑∞

j=0 Γj
b(τj ;τ0)

b̄(τ0)

∣∣∣ τ0

]
, we have

σ̂agg − σagg = ε

∫
E

 ∞∑
j=0

Γj(α(τj ; τ0)− ᾱ(τ0))

(
1− b(τj ; τ0)

b̄(τ0)

)∣∣∣∣∣∣ τ0

 rK(τ0)

rK + wL

1

α(1− α)
dT (τ0)

Defining x(τ) ≡ E
[∑∞

j=0 Γj(α(τj ; τ0)− ᾱ(τ0))
(
b(τj ;τ0)

b̄(τ0)
− 1
)∣∣∣ τ0

]
to be the probability-weighted co-
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variance of α(τj ; τ0) and
b(τj ;τ0)

b̄(τ0)
within a spell of non-adjustment, we can express the bias as

σ̂agg − σagg = ε

∫
[−x(τ0)]

rK(τ0)

rK + wL

1

α(1− α)
dT (τ0) (I.11)

Sign of the Bias In this section, we argue that in the presence of adjustment frictions to capital,
the true aggregate elasticity is likely to be lower than our baseline estimate. If we could observe
α̃(τj , τ0), then could measure σagg directly. However, in the presence of adjustment frictions, we
cannot back out technology from observed cost shares. Nevertheless, we will show that, in the
empirically relevant case of ε > 1 > σ, the terms x(τ), which measure the covariance of α(τj ; τ0)

and b(τj ; τ0) ≡
( εσ−1)

α̃(τj ;τ0)

α(τj ;τ0)
+1

( εσ−1)α̃(τj ;τ0)+1
during the spell of non-adjustment, are likely to be negative.

First, any changes in i’s capital-labor ratio pushes α() and b() in opposite directions. α is
increasing in the capital-labor ratio and, since σ < 1, α̃ is decreasing in the capital-labor ratio.
Since b is decreasing in α and increasing in α̃, b is decreasing in the capital-labor ratio. The only
possible countervailing force that can cause x(τ) to be positive is changes in the bias of technology.

An important consequence is that if the main forces affecting a plant during a spell of non-
adjustment are demand shocks or Hicks-neutral productivity shocks, the covariance will be unam-
biguously negative for all τ . All of these forces leave the bias of technology unchanged.

We next examine non-neutral shocks. In this case, it is possible that x(τ) will be positive for
some τ , but there are still several forces that push α and b in opposite directions. First, b is directly
decreasing in α, which leads to a mechanical negative relationship. Second, the changes in L in
response to any shock push α and α̃ in opposite directions. For x(τ) to be positive, the direct
impact of the change in the bias of technology on α̃ must be so large that it dominates these two
forces.

I.5 A second order approximation with Misallocation

In this section we characterize the difference between the true aggregate elasticity and our baseline
estimate using a second order approximation. We let variables with the superscript ∗ denote the
value in the allocation without adjustment frictions. In addition, we define κ ≡

(
ε
σ − 1

)
.

Abusing notation, we can express L, α, α̃ and b in terms of the technology at the beginning of
the spell, τ , and the current technology, A, B. For example, given that capital depends only on
technology at the beginning of the spell, L(A,B; τ) satisfies the first order condition

ε− 1

ε
PY 1/ε

[
(AK (τ))

σ−1
σ + (BL (A,B; τ))

σ−1
σ

] σ
σ−1

ε−1
ε
−1
B

σ−1
σ L(A,B; τ)−

1
σ = w (I.12)

With this, we have

α(A,B; τ) =
rK(τ)

rK(τ) + wL(A,B; τ)

α̃(A,B; τ) =
(AK(τ))

σ−1
σ

(AK(τ))
σ−1
σ + (BL(A,B; τ))

σ−1
σ

b(A,B; τ) =
κ α̃(A,B;τ)
α(A,B;τ) + 1

κα̃(A,B; τ) + 1
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We begin with a lemma characterizing how changes in technology within a spell of non-adjustment
affect labor used.

Lemma I.2 Within a spell of non-adjustment starting with technology τ ,

d lnL(A,B; τ)

d lnA
= 1− 1

κα̃(A,B; τ) + 1

d lnL(A,B; τ)

d lnB
=

ε

κα̃(A,B; τ) + 1
− 1

Proof. Taking logs and differentiating (I.12) with respect to A and B respectively gives(
σ

σ − 1

ε− 1

ε
− 1

)
(AK)

σ−1
σ

σ−1
σ + (BL)

σ−1
σ

σ−1
σ

d lnL
d lnA

(AK)
σ−1
σ + (BL)

σ−1
σ

− 1

σ

d lnL

d lnA
= 0

(
σ

σ − 1

ε− 1

ε
− 1

)
(BL)

σ−1
σ

σ−1
σ

(
1 + d lnL

d lnB

)
(AK)

σ−1
σ + (BL)

σ−1
σ

+
σ − 1

σ
− 1

σ

d lnL

d lnB
= 0

Using α̃ = (AK)
σ−1
σ

(AK)
σ−1
σ +(BL)

σ−1
σ

and simplifying gives

(
1

σ
− 1

ε

)(
α̃+ (1− α̃)

d lnL

d lnA

)
− 1

σ

d lnL

d lnA
= 0(

1

σ
− 1

ε

)
(1− α̃)

(
1 +

d lnL

d lnB

)
+
σ − 1

σ
− 1

σ

d lnL

d lnB
= 0

Solving for d lnL
d lnA and d lnL

d lnB respectively gives

κα̃

κα̃+ 1
=

d lnL

d lnA
ε

κα̃+ 1
− 1 =

d lnL

d lnB

We now use these results to derive a second order approximation of

σagg − σ̂agg =

∫
x(τ)

rK (τ)

rK + wL
dT (τ)

We parameterize an economy by ν. In particular, we hold fixed the cross sectional distribution of
technology T (τ), but use the perturbation parameter ν to parameterize the within-spell variation
in technology. In particular, If Aτ0 and Bτ0 are the technologies at the beginning of the spell, we
let A (ν, τj,τ0) ≡ A1−ν

τ0 Aντj and B (ν, τj , τ0) ≡ B1−ν
τ0 Bν

τj . Thus in an economy with ν = 0, technology
remains fixed within a spell, whereas an economy with ν = 1 is our baseline. Nevertheless, because
technologies are uncorrelated with spells of adjustment, the cross-sectional distribution T (τ) is the
same in both economies.

In an economy ν, the difference between the true aggregate elasticity and our baseline estimate
would be

σagg(ν)− σ̂agg(ν) =

∫
x (τ ; ν)

rK (τ ; ν)

rK (ν) + wL(ν)
dT (τ)
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We will take a second order expansion of σagg − σ̂agg ≡ σagg (1) − σ̂agg (1) around ν = 0. The
following lemmas will be helpful in evaluating that expansion.

Lemma I.3 Define where H(τ) ≡ (1−α∗(τ)) 1
σ

+α∗(τ)(κ+1)

(κα∗(τ)+1)2

dα(A,B; τ)

d lnA

∣∣∣∣
ν=0

= −α∗(τ) (1− α∗ (τ))
κα∗(τ)

κα∗(τ) + 1

dα(A,B; τ)

d lnB

∣∣∣∣
ν=0

= α∗(τ) (1− α∗ (τ))

(
1− ε

κα∗ (τ) + 1

)
d ln b(A,B; τ)

d lnA

∣∣∣∣
ν=0

= (1− α∗(τ))
κ

κ+ 1
(1−H(τ))

d ln b(A,B; τ)

d lnB

∣∣∣∣
ν=0

= − (1− α∗(τ))
κ

κ+ 1
(1− εH(τ))

Proof. To find the expressions for
d ln

α(A,B;τ)
1−α(A,B;τ)

d lnA , and
d ln

α(A,B;τ)
1−α(A,B;τ)

d lnB , we can simply differentiate with
respect to A and B. Suppressing the arguments (A,B; τ), these are

d ln α
1−α

d lnA
=

d ln rK
wL

d lnA
= −d lnL

d lnA
= − κα̃

κα̃+ 1

d ln α
1−α

d lnB
=

d ln rK
wL

d lnB
= − d lnL

d lnB
= 1− ε

κα̃+ 1

The results follow from dα = α (1− α) d ln α
1−α . Similarly, to find expressions for

d ln α̃
1−α̃

d lnA and
d ln α̃

1−α̃
d lnB we can simply differentiate:

d ln α̃
1−α̃

d lnA
=

d ln
(
AK
BL

)σ−1
σ

d lnA
=
σ − 1

σ

(
1− d lnL

d lnA

)
d ln α̃

1−α̃
d lnB

=
d ln

(
AK
BL

)σ−1
σ

d lnB
=
σ − 1

σ

(
−1− d lnL

d lnB

)
These can be used to derive expressions for d ln bi

d lnA and d ln bi
d lnB

d ln b

d lnA
=

d ln
κ α̃
α

+1

κα̃+1

d lnA
=

κ α̃α
κ α̃α + 1

(
d ln α̃

d lnA
− d lnα

d lnA

)
−
κα̃ d ln α̃

d lnA

κα̃+ 1

=
κ α̃α

κ α̃α + 1

(
(1− α̃)

σ − 1

σ

(
1− d lnL

d lnA

)
− (1− α)

(
−d lnL

d lnA

))
− κα̃

κα̃+ 1
(1− α̃)

σ − 1

σ

(
1− d lnL

d lnA

)
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Evaluating this at ν = 0 gives

d ln b

d lnA

∣∣∣∣
ν=0

= (1− α∗)
[

κ

κ+ 1

(
σ − 1

σ

(
1− d lnL

d lnA

)
−
(
−d lnL

d lnA

))
− κα∗

κα∗ + 1

σ − 1

σ

(
1− d lnL

d lnA

)]
= (1− α∗) κ

κ+ 1

[(
σ − 1

σ

(
1− d lnL

d lnA

)
−
(
−d lnL

d lnA

))
− (κ+ 1)α∗

κα∗ + 1

σ − 1

σ

(
1− d lnL

d lnA

)]
= (1− α∗) κ

κ+ 1

[
1−

{
(1− α∗) 1

σ + α∗ (κ+ 1)

(κα∗ + 1)

}(
1− d lnL

d lnA

)]
= (1− α∗) κ

κ+ 1
[1−H (τ)]

Similarly, we can differentiate with respect to B

d ln b

d lnB
=

d ln
κ α̃
α

+1

κα̃+1

d lnB
=

κ α̃α
κ α̃α + 1

(
d ln α̃

d lnB
− d lnα

d lnB

)
−
κα̃ d ln α̃

d lnB

κα̃+ 1

=
κ α̃α

κ α̃α + 1

(
(1− α̃)

σ − 1

σ

(
−1− d lnL

d lnB

)
− (1− α)

(
− d lnL

d lnB

))
− (1− α̃)

κα̃

κα̃+ 1

σ − 1

σ

(
−1− d lnL

d lnB

)
Evaluating this at ν = 0 gives

d ln b

d lnB

∣∣∣∣
ν=0

= (1− α∗)
{

κ

κ+ 1

(
σ − 1

σ

(
−1− d lnL

d lnB

)
−
(
− d lnL

d lnB

))
− κα∗

κα∗ + 1

σ − 1

σ

(
−1− d lnL

d lnB

)}
= (1− α∗) κ

κ+ 1

{(
σ − 1

σ

(
−1− d lnL

d lnB

)
−
(
− d lnL

d lnB

))
− (κ+ 1)α∗

κα∗ + 1

σ − 1

σ

(
−1− d lnL

d lnB

)}
= − (1− α∗) κ

κ+ 1

{
1−

[
(1− α∗) 1

σ + α∗ (κ+ 1)

κα∗ + 1

](
1 +

d lnL

d lnB

)}
= − (1− α∗) κ

κ+ 1
{1− εH(τ)}

Lemma I.4 Let V (τ) ≡
∑∞

j=0 ΓjE

[(
lnAτj − lnA(τ)

lnBτj − lnB(τ)

)(
lnAτj − lnA(τ)

lnBτj − lnB(τ)

)′∣∣∣∣∣ τ
]

be the probability-

weighted variance-covariance matrix of (logA, logB) over the horizon of the spell.

x (τ ; ν)|ν=0 = 0

∂x (τ, ν)

∂ν

∣∣∣∣
ν=0

= 0

1

2

∂2x (τ, ν)

∂ν2

∣∣∣∣
ν=0

=
κα∗ (τ) (1− α∗(τ))2

(κ+ 1) (κα∗(τ) + 1)

(
−κα∗(τ)

κα∗(τ) + 1− ε

)′
V (τ)

(
1−H(τ)
−1 + εH(τ)

)
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Proof. The definition of x (τ ; ν) along with is first and second derivatives with respect to ν are

x (τ ; ν) =
∞∑
j=0

ΓjE
[
(α (τj ; τ, ν)− ᾱ (τ, ν))

(
b (τj ; τ, ν)

b̄ (τ ; ν)
− 1

)]

dx (τ ; ν)

dν
=

∞∑
j=0

ΓjE

d [α (τj ; τ, ν)− ᾱ (τ, ν)]

dν

(
b (τj ; τ, ν)

b̄ (τ ; ν)
− 1

)
+ (α (τj ; τ, ν)− ᾱ (τ, ν))

d
(
b(τj ;τ,ν)

b̄(τ ;ν)

)
dν



d2x (τ ; ν)

dν2
=

∞∑
j=0

ΓjE



d2[α(τj ;τ,ν)−ᾱ(τ,ν)]
dν2

(
b(τj ;τ,ν)

b̄(τ ;ν)
− 1
)

+2
d[α(τj ;τ,ν)−ᾱ(τ,ν)]

dν

d

(
b(τj ;τ,ν)
b̄(τ ;ν)

)
dν

+ (α (τj ; τ, ν)− ᾱ (τ, ν))
d2

(
b(τj ;τ,ν)
b̄(τ ;ν)

)
dν2


Since

∑∞
j=0 ΓjE [α∗ (τj ; τ, ν)− ᾱ∗ (τ, ν)] =

∑∞
j=0 ΓjE

[
b(τj ;τ,ν)

b̄(τ ;ν)
− 1
]

= 0, we immediately have that

x (τ ; ν)|ν=0 = ∂x(τ,ν)
∂ν

∣∣∣
ν=0

= 0, and

1

2

d2x (τ ; ν)

dν2

∣∣∣∣
ν=0

=

∞∑
j=0

ΓjE

 d [α (τj ; τ, ν)− ᾱ (τ, ν)]

dν

d
(
b(τj ;τ,ν)

b̄(τ ;ν)

)
dν

∣∣∣∣∣∣
ν=0


To get at each of these expressions, we have

d [α (τj ; τ, ν)− ᾱ (τ, ν)]

dν

∣∣∣∣
ν=0

=
dα (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

ln
Aτj
Aτ

+
dα (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

ln
Bτj
Bτ

−
∞∑
j=0

ΓjE
[
dα (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

ln
Aτj
Aτ

+
dα (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

ln
Bτj
Bτ

]

=
dα (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

(
lnAτj − lnA (τ)

)
+
dα (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

(
lnBτj − lnB (τ)

)
=

 dα(τj ;τ,ν)
d lnA

∣∣∣
ν=0

dα(τj ;τ,ν)
d lnB

∣∣∣
ν=0

′ ( lnAτj − lnA(τ)

lnBτj − lnB(τ)

)

Using the expression for In addition, we have

d
(
b(τj ;τ,ν)

b̄(τ ;ν)

)
dν

∣∣∣∣∣∣
ν=0

=
b (τj ; τ, ν)

b̄ (τ ; ν)

∣∣∣∣
ν=0

(
d ln b (τj ; τ, ν)

dν
− 1

b̄ (τ ; ν)

db̄ (τ ; ν)

dν

)∣∣∣∣
ν=0

=
b (τj ; τ, ν)

b̄ (τ ; ν)

∣∣∣∣
ν=0

d ln b (τj ; τ, ν)

dν
− 1

b̄ (τ ; ν)

∞∑
j=0

ΓjE
[
db (τj ; τ, ν)

dν

]∣∣∣∣∣∣
ν=0

=
b (τj ; τ, ν)

b̄ (τ ; ν)

∣∣∣∣
ν=0

d ln b (τj ; τ, ν)

dν
−
∞∑
j=0

ΓjE
[
b (τj ; τ, ν)

b̄ (τ ; ν)

d ln b (τj ; τ, ν)

dν

]∣∣∣∣∣∣
ν=0
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Using b (τj ; τ, ν)|ν=0 = b̄ (τ ; ν)
∣∣
ν=0

, we have

d
(
b(τj ;τ,ν)

b̄(τ ;ν)

)
dν

∣∣∣∣∣∣
ν=0

=

d ln b (τj ; τ, ν)

dν
−
∞∑
j=0

ΓjE
[
d ln b (τj ; τ, ν)

dν

]∣∣∣∣∣∣
ν=0

=
d ln b (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

ln
Aτj
Aτ

+
d ln b (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

ln
Bτj
Bτ

−
∞∑
j=0

ΓjE
[
d ln b (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

ln
Aτj
Aτ

+
d ln b (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

ln
Bτj
Bτ

]

=
d ln b (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

(
ln
Aτj
Aτ
− lnA(τ)

)
+
d ln b (τj ; τ, ν)

d lnA

∣∣∣∣
ν=0

(
lnBτj − lnB(τ)

)
=

(
lnAτj − lnA(τ)

lnBτj − lnB(τ)

)′ d ln b(τj ;τ,ν)
d lnA

∣∣∣
ν=0

d ln b(τj ;τ,ν)
d lnB

∣∣∣
ν=0



These, along with the definition of V (τ) ≡
∑∞

j=0 ΓjE

[(
lnAτj − lnA(τ)

lnBτj − lnB(τ)

)(
lnAτj − lnA(τ)

lnBτj − lnB(τ)

)′∣∣∣∣∣ τ
]

,

we have

1

2

d2x (τ ; ν)

dν2

∣∣∣∣
ν=0

=

 dα(τj ;τ,ν)
d lnA

∣∣∣
ν=0

dα(τj ;τ,ν)
d lnB

∣∣∣
ν=0

′ V (τ)

 d ln b(τj ;τ,ν)
d lnA

∣∣∣
ν=0

d ln b(τj ;τ,ν)
d lnB

∣∣∣
ν=0


These along with the expressions from Lemma I.3 give the result.

We are now in position to state the main result of the section.

Proposition I.1 For a spell of non-adjustment that begins with technology τ , let V (τ) be the
probability-weighted variance-covariance matrix of (logA, logB) over the horizon of the spell. Then,
to a second order approximation

σagg − σ̂agg =

∫ (
−κα∗(τ)

κα∗(τ) + 1− ε

)′
V (τ)

(
1−H(τ)
−1 + εH(τ)

)
J(τ)dT (τ) +O

(
ν3
)

where κ ≡ ε
σ − 1, H(τ) ≡ (1−α∗(τ)) 1

σ
+α∗(τ)(κ+1)

(κα∗(τ)+1)2 . and J (τ) ≡ κα∗(τ)2(1−α∗(τ))2

(κ+1)(κα∗(τ)+1) θ
∗(τ).

Proof. A second order approximation yields

σagg − σ̂agg = σagg(ν)− σ̂agg(ν)|ν=1

= σagg(ν)− σ̂agg (ν)|ν=0 + σagg
′
(ν)− σ̂agg′(ν)

∣∣∣
ν=0

+
σagg′′(ν)− σ̂agg′′(ν)

2

∣∣∣∣
ν=0

+O
(
ν3
)

x (τ ; ν)|ν=0 = 0 and ∂x(τ,ν)
∂ν

∣∣∣
ν=0

= 0 imply that the constant and first order terms are both zero.
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These also imply that the second order term can be expressed as

σagg′′(ν)− σ̂agg′′(ν)

2

∣∣∣∣
ν=0

=
1

2

∫  ∂2x(τ ;ν)
∂ν2

rK(τ ;ν)
rK(ν)+wL(ν) + ∂x(τ ;ν)

∂ν

∂
rK(τ ;ν)

rK(ν)+wL(ν)

∂ν

+x (τ ; ν)
∂2 rK(τ ;ν)

rK(ν)+wL(ν)

∂ν2


ν=0

dT (τ)

=

∫
1

2

∂2x (τ ; ν)

∂ν2

∣∣∣∣
ν=0

rK∗

rK∗ + wL∗
dT (τ)

=

∫
1

2

∂2x (τ ; ν)

∂ν2

∣∣∣∣
ν=0

α∗(τ)θ∗(τ)dT (τ)

The result follows using the expression for 1
2
∂2x(τ ;ν)
∂ν2

∣∣∣
ν=0

from the previous lemma.

I.6 Capital Adjustment Costs: Monte Carlo

In this section we use a Monte Carlo simulation to examine the sign and magnitude of the difference
between the true elasticity and our baseline estimate. We first study how the nature of the shocks
facing plants determines the sign of the difference. We consider hypothetical economies:(1) Hicks
neutral shocks; (2) shocks are purely labor-augmenting; (3) shocks are purely capital-augmenting;
(4) shocks to A and B are perfectly negatively correlated. For each, we summarize the variation in
shocks within a spell by Υ, and report the bias as a proportion of Υ. We summarize the cases as
follows:

1. Shocks are Hicks-neutral: VAA = VBB = VAB = Υ

σagg − σ̂agg = −(ε− 1)2Υ

∫
H(τ)J(τ)dT (τ) +O(ν3)

2. Labor-augmenting shocks: VBB = Υ, VAA = VAB = 0

σagg − σ̂agg = −Υ

∫
(κα∗(τ) + 1− ε) (1−H(τ)ε) J(τ)dT (τ) +O(ν3)

3. Capital-augmenting shocks: VAA = Υ, VBB = VAB = 0

σagg − σ̂agg = −Υ

∫
κα∗ (τ) (1−H(τ)) J(τ)dT (τ) +O

(
ν3
)

4. Negatively correlated shocks VAA = VBB = −VAB = Υ

σagg − σ̂agg = Υ

∫
(−2κα∗ (τ)− (1− ε)) (2− (ε+ 1)H(τ)) J(τ)dT (τ) +O

(
ν3
)

For each, we simulate an economy with 700 locations that each contain 100 plants. We normalize the
rental rate to 1 and draw the natural log of each location’s wage from a uniform (0,1) distribution.
We set σ to 0.34 to match the long run dynamic panel estimate using all of our instruments in an
unbalanced panel (see the second column, last row of Table C.6). We set ε to 3 to match the average
scale elasticity, i.e., the weighted average of the demand elasticity and the materials-primary inputs
elasticity of substitution. We draw the ex-ante distribution of technology parameters Ai and Bi
from a joint lognormal. We normalize the mean of Ai to 1, and choose the mean of Bi, the variances
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of Ai and Bi as well as their covariance to match the following four moments: an aggregate capital
share of 0.3, a value of χ of 0.1, the 90-10 ratio of marginal cost across plants of 2.7, and the
coefficient of a regression of log( αi

1−αi ) on log θi (weighting by θi) of 0.08.20

For each of these four cases, we conduct a set of 200 simulations. In all four cases, the true
elasticity is lower than the estimated elasticity. Given a value of the within-spell variance of shocks,
Υ, the difference between the true elasticity and our baseline estimate is, on average across simu-
lations, (1) −0.017×Υ assuming Hicks neutral shocks, (2) −0.004×Υ assuming labor-augmenting
shocks, (3) −0.014×Υ assuming capital-augmenting shocks, −0.020×Υ assuming perfectly nega-
tively correlated labor-augmenting and capital-augmenting shocks. We conclude that whatever the
configuration of shocks, the true elasticity is likely to be lower than our baseline estimate.

We next attempt to bound the magnitude of the bias. To do this, we need to take a stand
on the stochastic process driving technology differences across firms and the nature of adjustment
frictions. It is likely that technology differences reflect both permanent and transitory differences.
It should be clear from the previous discussion that the magnitude of the bias will be larger if
the within-spell variation in technologies is larger. Thus, to find an upper bound, we examine
the extreme case in which all technology differences are transitory and last for one period, i.e,
technology differences are IID. Note that this is a uniform upper bound that is independent of the
specification of capital adjustment frictions. Across the 200 simulations, the true elasticity is, on
average, 0.026 lower than our baseline estimate.

J Additional Margins of Adjustment

This focuses on extensions of the model discussed in Section 4 of the main text. Web Appendix J.1
allows for long run shifts in the technological frontier. Web Appendix J.2 incorporates intangible
capital. Web Appendix J.3 we study an environment in which each plant chooses from a menu of
technologies. Lastly, Web Appendix J.4 discusses the difference between cross-sectional estimates
and nationwide elasticities.

J.1 Shifts in the Technological Frontier

Shifts in factor prices may induce changes in the technological frontier, as outlined by Acemoglu
(2002). Holding the technological frontier fixed, an increase in the wage would change the economy’s
capital-labor ratio. This would change the size of the market for innovations that complement each
factor, and the subsequent adjustment of the technological frontier could amplify or dampen the
initial wage increase.

We characterize the technological frontier as a set of intermediate input varieties that comple-
ment capital and a set that complement labor. The two sets can be respectively aggregated into

two bundles, MK ≡
(∫ NK

0 MK(j)
ϕ−1
ϕ dj

) ϕ
ϕ−1

and ML ≡
(∫ NL

0 ML(j)
ϕ−1
ϕ dj

) ϕ
ϕ−1

, so that the state

of technology can be summarized by the measure of varieties of each type, NK and NL.

20Figure 5 depicts the aggregate share for the manufacturing sector over time, and Figure 1 values of χ
across industries. Table 1 in Syverson (2004) examines dispersion in productivity (our value corresponds to
the 90-10 ratio in TFP computed using plant specific input elasticities). Table 3 in Raval (2019) reports the
coefficient of regressions of the capital share to labor share ratio on value added, weighting by value added,
with estimates ranging from 0.05 to 0.09 using the Census of Manufactures across years, and 0.06 to 0.11
using the Annual Survey of Manufactures.
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Plant i produces its output using capital, labor, intermediate inputs that complement capital
and labor, as well as a third intermediate input that does not complement either factor. It is
convenient to describe i’s production function using a nested structure:

Yi = Fi(YKi, YLi,M0i)

with YKi ≡ Kψ
i M

1−ψ
Ki and YLi ≡ Lψi M

1−ψ
Li .

Each variety of intermediate input is produced by a monopolist by using % units of the final
good aggregate, so no capital or labor is used. Monopolists compete monopolistically and thus set
a price of ϕ

ϕ−1%P . The unit cost of the input bundle that complements factor x ∈ {K,L} is thus

qx =

(∫ Nx
0

(
ϕ
ϕ−1%P

)1−ϕ
dj

) 1
1−ϕ

= ϕ
ϕ−1%PN

1
1−ϕ
x .

Aggregate factor shares depend on relative factor prices and the technological frontier, NK and
NL. We now distinguish between the short-run aggregate elasticity which holds the technological
frontier fixed and the long-run elasticity which includes shifts in the frontier. These two elasticities
are related by

d ln α
1−α

d lnw/r︸ ︷︷ ︸
σagg,LR−1

=
∂ ln α

1−α
∂ lnNK

d lnNK

d lnw/r
+
∂ ln α

1−α
∂ lnNL

d lnNL

d lnw/r
+
∂ ln α

1−α
∂ lnw/r︸ ︷︷ ︸
σagg,SR−1

(J.1)

We show in Web Appendix J.1.1 that the effect of changes in the technological frontier on factor
shares is characterized by

∂ ln α
1−α

∂ lnNK
=

1

ψ

1− ψ
ϕ− 1

(
σagg,SR − 1

)
(J.2)

∂ ln α
1−α

∂ lnNL
= − 1

ψ

1− ψ
ϕ− 1

(
σagg,SR − 1

)
(J.3)

For intuition, suppose that capital and labor are complements in the short run. The creation of
varieties that complement capital reduces the relative cost of the capital aggregate YK , leading
plants to reduce their relative expenditures on capital because YK and YL are complements.

To study shifts in the technological frontier, we specify its determinants in greater detail. A fixed
mass Υ of scientists invent new varieties and license their inventions to monopolists. Scientists can
direct their research toward one of the two types of intermediate varieties. If a scientist devotes effort
to finding new varieties that complement x ∈ {K,L}, then new varieties arrive at Poisson rate γN τ

x ,
with τ < 1.21 Existing varieties become useless at rate δ. At an interior steady state, scientists must
be indifferent about devoting effort to each type of innovation. We show in Web Appendix J.1.1
that the long-run technological frontier is characterized by N1−τ

K = αγΥ
δ and N1−τ

L = (1 − α)γΥ
δ .

21τ < 0 implies that as more varieties are discovered, new varieties are harder to find. τ > 0 would
capture positive spillovers from past research. τ = 1 would deliver endogenous growth in the number of
varieties. We abstract from growth because it would require a number of additional assumptions about how
plant-level technologies and the distribution of plants evolves over time. In Web Appendix J.1.1 we study an
alternative specification with spillovers across types of varieties, so that the arrival rate of new varieties that
complement capital and that complement labor are γNτ1

K N
τ2
L and γNτ1

L N
τ2
K per unit of research respectively.

We impose τ1 + τ2 < 1 to avoid perpetual growth. We show that the relationship between the long-run and
short-run elasticities of substitution described in (J.4) below is identical with the exception that τ is replaced
by τ1 + τ2.
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Differentiating with respect to relative factor prices gives:

d lnNK

d lnw/r
=

1

1− τ
(1− α)(σagg,LR − 1)

d lnNL

d lnw/r
= − 1

1− τ
α(σagg,LR − 1).

Plugging these equations and (J.2) and (J.3) into (J.1) and rearranging gives

σagg,LR − 1 =
1

1 + 1
ψ

1−ψ
ϕ−1

1
1−τ (1− σagg,SR)

(σagg,SR − 1). (J.4)

Because 1
ψ

1−ψ
ϕ−1

1
1−τ > 0, if σagg,SR < 1, then σagg,LR is between σagg,SR and one. If σagg,SR < 1,

an increase in wages initially raises the relative expenditure on labor. This induces the creation of
varieties that complement labor, reducing the relative cost of the aggregate YLi. Since YLi and YKi
are complements, plants shift expenditures away from YLi and hence away from labor, dampening
the initial shift in factor shares.22

J.1.1 Proofs for Shifts in the Technological Frontier

Claim J.1 The elasticities of relative factor shares to the measures of varieties that complement
capital and that complement labor are

∂ ln α
1−α

∂ lnNK
=

1

ψ

1− ψ
ϕ− 1

(
σagg,SR − 1

)
∂ ln α

1−α
∂ lnNL

= − 1

ψ

1− ψ
ϕ− 1

(
σagg,SR − 1

)
Proof. Let P denote the aggregate price level and let pK ≡ 1

ψψ(1−ψ)1−ψ r
ψq1−ψ

K and pL ≡
1

ψψ(1−ψ)1−ψw
ψq1−ψ

L denote the respective shadow costs of YK and YL. Note first that pK and pL are

sufficient to determine the aggregate price level, P , which solves the following fixed point problem:
Given P , each plant’s unit cost can be found using cost minimization λi = minYKi,YLi,M0i pKYKi +
pLYLi + PM0i subject to Fi(YKi, YLi,M0i) ≥ 1. With constant markups, the price level satisfies

P 1−ε =
∑

i P
1−ε
i =

∑
i

(
ε
ε−1λi

)1−ε
.

As a consequence, pK and pL are also sufficient to characterize plant i’s use of YKi and YLi.
Since rKi = ψpKYKi and wLi = ψpLYLi, pK and pL are sufficient to characterize α. Thus given

plants’ production functions, {Fi},
d ln α

1−α
d ln pK/pL

is well-defined.

Finally, since pK
pL

=
(
r
w

)ψ ( qK
qL

)1−ψ
=
(
r
w

)ψ (NK
NL

) 1−ψ
1−ϕ

, we have that

∂ ln pK/pL
∂ lnNK

=
1

ψ

1− ψ
ϕ− 1

∂ ln pK/pL
∂ lnw/r

∂ ln pK/pL
∂ lnNL

= − 1

ψ

1− ψ
ϕ− 1

∂ ln pK/pL
∂ lnw/r

22Acemoglu (2003) studies a model with τ = 1 and shows that long-run factor shares are fixed. While we
have imposed the restriction τ < 1 to abstract from growth, we can recover Acemoglu’s (2003) result in the
limit of τ ↗ 1.
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We then have:

∂ ln α
1−α

∂ lnNK
=

∂ ln α
1−α

∂ ln pK/pL

∂ ln pK/pL
∂ lnNK

=
∂ ln α

1−α
∂ ln pK/pL

(
1

ψ

1− ψ
ϕ− 1

∂ ln pK/pL
∂ lnw/r

)
=

1

ψ

1− ψ
ϕ− 1

∂ ln α
1−α

∂ lnw/r

∂ ln α
1−α

∂ lnNL
=

∂ ln α
1−α

∂ ln pK/pL

∂ ln pK/pL
∂ lnNL

=
∂ ln α

1−α
∂ ln pK/pL

(
− 1

ψ

1− ψ
ϕ− 1

∂ ln pK/pL
∂ lnw/r

)
= − 1

ψ

1− ψ
ϕ− 1

∂ ln α
1−α

∂ lnw/r

Claim J.2 At an interior steady state, N1−τ
K = αγΥ

δ and N1−τ
L = (1− α)γΥ

δ .

Proof. For x ∈ {K,L}, let Υx be the mass of scientists that devote their efforts to finding new
varieties that complement x. Then Nx follows the law of motion Ṅx = ΥxγN

τ
x − δNx. Let Vx be

the value of the rights to a variety that complements x. This value satisfies the Bellman equation
ρVx = πx − δVx + V̇x, where πx is the flow profit from owning a single variety that complements x.
An interior equilibrium requires that γN τ

KVK = γN τ
LVL. In a long-run equilibrium, VK , VL, NK ,

NL, πK , and πL are constant, which implies Vx = πx
ρ+δ , and hence

γN τ
K

πK
ρ+ δ

= γN τ
L

πL
ρ+ δ

(J.5)

Noting that πx = qxMx

ϕNx
, we have that πK

πL
= qKMK/NK

qLML/NL
. Since qKMK = 1−ψ

ψ rK and qLML = 1−ψ
ψ wL,

we have πK
πL

= α/NK
(1−α)/NL

. Combining this with (J.5) and rearranging gives
(
NK
NL

)1−τ
= α

1−α . In

steady state, the laws of motion for NK and NL imply N1−τ
x = γ

δΥx, so that ΥK = αΥ and

ΥL = (1− α)Υ. Therefore N1−τ
K = αγΥ

δ and N1−τ
L = (1− α)γΥ

δ .

Spillovers

Suppose that the arrival rate of new varieties depended on the existing varieties of each type, so
that

ṄK = γΥKN
τ1
KN

τ2
L − δNK

ṄL = γΥLN
τ1
L N

τ2
K − δNL

Steady state requires ṄK = ṄL = 0, while an interior equilibrium requires that γN τ1
KN

τ2
L πK =

γN τ1
L N

τ2
K πL. As described above, πK

πL
= α/NK

(1−α)/NL
. All together, these equations imply

N1−τ1−τ2
K =

γΥ

δ
α

1−τ1
1−τ1+τ2 (1− α)

τ2
1−τ1+τ2

N1−τ1−τ2
L =

γΥ

δ
(1− α)

1−τ1
1−τ1+τ2 α

τ2
1−τ1+τ2

The elasticities of these with respect to factor prices is therefore

(1− τ1 − τ2)
d lnNK

d lnw/r
=

[
(1− α)− τ2

1− τ1 + τ2

]
(σagg,LR − 1)

(1− τ1 − τ2)
d lnNL

d lnw/r
=

[
−α− τ2

1− τ1 + τ2

]
(σagg,LR − 1)
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These along with Claim J.1 imply

(1− τ1 − τ2)

[
∂ ln α

1−α
∂ lnNK

d lnNK

d lnw/r
+
∂ ln α

1−α
∂ lnNL

d lnNL

d lnw/r

]
=

1

ψ

1− ψ
ϕ− 1

(σagg,SR − 1)(σagg,LR − 1)

Plugging this into (J.1) and solving for the long run elasticity of substitution gives

σagg,LR − 1 =
1

1 + 1
1−τ1−τ2

1
ψ

1−ψ
ϕ−1 (1− σagg,SR)

(σagg,SR − 1)

J.2 Intangible Capital

Investment in intangible capital has risen over time. In this section, we study how incorporating
intangible capital into production affects both the interpretation of the elasticity of substitution
between physical capital and labor and our estimation strategy.

This section takes the view that production of intangible capital is an intermediate step taken
by plants in the course of producing the good that it sells to customers. The simplest version
of this is a static problem in which a firm produces intangible capital using tangible inputs ac-
cording to a production function Oi = Hi(K

O
i , L

O
i ,M

O
i ) and, in turn, produces output for cus-

tomers using intangible capital and more tangible inputs according to the production function
Yi = Gi(K

Y
i , L

Y
i ,M

Y
i , Oi). Specifically, we can write plant i’s output as a function of total tangible

inputs, Ki, Li,Mi:

Yi = Fi(Ki, Li,Mi) = max
KY
i ,L

Y
i ,M

Y
i ,K

O
i ,L

O
i ,M

O
i ,Oi

Gi(K
Y
i , L

Y
i ,M

Y
i , Oi)

subject to KY
i +KO

i ≤ Ki, L
Y
i + LOi ≤ Li, MY

i +MO
i ≤Mi, and

Oi ≤ Hi(K
O
i , L

O
i ,M

O
i ).

This formulation allows for the possibility that technical change (in either Gi or Hi) increased the
role of intangible capital over time.

With this microfoundation of the plant-level production function, our baseline estimate of the
aggregate elasticity of substitution between physical capital and labor recovers the correct elasticity.
Our strategy recovers the elasticities of the reduced form of the indirect production function Fi,
and the rest of the argument follows exactly along the lines of Section 2.

J.2.1 Marketing

There has been active discussion about whether market power—and particularly markups over
marginal cost— has risen over time (De Loecker et al. (2020), Traina (2018)). As documented
by Traina (2018), the share of expenditures spent on marketing and management among publicly
traded firms has risen over time, so that ratios of revenue to production costs has risen more
sharply than ratios of revenue to total cost. To some extent, this discussion has focused on whether
marketing costs should be considered part of variable cost. In this section we describe how we
incorporate marketing costs into our framework, allowing plants to invest to increase demand.
As with intangible capital that increases output (studied in the last section), we show here that
our baseline estimate continues to recover the aggregate elasticity, regardless of the division of
expenditures between production and marketing costs, as long as these expenditures are measured.
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Suppose that output is produced according to the production function Yi = Gi(K
Y
i , L

Y
i ,M

Y
i )

and plant i’s demand depends on marketing expenditures according to the functionDi(K
D
i , L

D
i ,M

D
i ),

where the consumer’s preferences can be represented by Y =

(∑
iD

1
ε
i Y

ε−1
ε

i

) ε
ε−1

. Plant i chooses

inputs for production and for marketing to maximize profit:

max
Pi,Yi,KY

i ,L
Y
i ,M

Y
i ,K

D
i ,L

D
i ,M

D
i

PiYi − r(KY
i +KD

i )− w(LYi + LDi )− q(MY
i +MD

i )

subject to the constraints imposed by technology Yi ≤ Gi(K
Y
i , L

Y
i ,M

Y
i ) and consumer demand

Yi ≤ Di(K
D
i , L

D
i ,M

D
i )Y P εP−εi , where P ≡

(
DiP

1−ε
i

) 1
1−ε is the ideal price index.

With the changes of variable Ỹi = D
1
ε−1Yi and P̃i = D−

1
ε−1Pi, we can express this as

max
P̃i,Ỹi,KY

i ,L
Y
i ,M

Y
i ,K

D
i ,L

D
i ,M

D
i

P̃iỸi − r(KY
i +KD

i )− w(LYi + LDi )− q(MY
i +MD

i )

subject to Ỹi ≤ Gi(K
Y
i , L

Y
i ,M

Y
i )Di(K

D
i , L

D
i ,M

D
i )

1
ε−1 and Ỹi ≤ Y P εP̃−εi . This can be expressed

even more succinctly as
max

P̃i,Ỹi,Ki,Li,Mi

P̃iỸi − rKi − wLi − qMi

subject to Ỹi ≤ Fi(Ki, Li,Mi) and Ỹi ≤ Y P εP̃−εi , where Fi(Ki, Li,Mi) is a demand-adjusted
production function defined as

Fi(Ki, Li,Mi) ≡ max
KY
i ,L

Y
i ,M

Y
i ,K

D
i ,L

D
i ,M

D
i

Gi(K
Y
i , L

Y
i ,M

Y
i )Di(K

D
i , L

D
i ,M

D
i )

1
ε−1

subject to KY
i + KD

i ≤ Ki, L
Y
i + LDi ≤ Li, and MY

i + MD
i ≤ Mi. This is now exactly the same

form as our baseline model.
For our purposes, we note that the markup over marginal cost per se is not the object of

interest, and not one we use in constructing the elasticity of substitution. As discussed in Web
Appendix D.3, the scale elasticity depends on both the elasticity of demand and the returns to
scale of the production function Fi, and the appropriate combination will be identified by the ratio
of revenue to total cost, regardless of the division of expenditures into production and marketing
costs. Changes in the division of expenditures between production and marketing costs pose no
additional obstacles so long as these expenditures are measured in the data.

J.2.2 Durable Intangible Capital

These arguments abstract from the fact that intangible capital is durable. While this alters the
problem slightly because each plant effectively produces two kinds of output, the basic intuition
carries over: each plant chooses tangible inputs to produce optimally (where production now in-
cludes investment in intangible capital). Our estimation strategy traces out how these choices
change when factor prices change; the intermediate step of producing intangible capital does not
fundamentally alter the problem.

When intangible capital is durable, the aggregate elasticity depends on the factor content of
output relative to the factor content of intangible goods. We examine two extreme cases (producing
intangible capital requires only labor or only physical capital) and one intermediate case (the factor
content of intangible capital matches the factor content of output). We show that in all three cases
true elasticity of substitution is quantitatively close to our baseline, with the difference ranging
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from 0.009 to 0.012. This happens because investment in intangible capital is a relatively small
fraction of gross output (Corrado et al. (2009) and Nakamura (2010)) and estimates of depreciation
rates for intangible capital tend to be relatively high (Corrado et al. (2009) and Li and Hall (2018)).

Consider an economy in which plants invest in intangible capital which serves as an additional
factor of production. A plant operates two technologies, one that transforms tangible goods into an
investment in intangible capital, Hi(K

O
i , L

O
i ,M

O
i ) and one that transforms tangible and intangible

inputs into output23,
Yi = Gi(K

Y
i , L

Y
i ,M

Y
i )φO′1−φ. (J.6)

Intangible capital accumulates according to the law of motion

O′ = Hi(K
O
i , L

O
i ,M

O
i ) + (1− δO)O (J.7)

This problem corresponds to the following Bellman equation, where Vi(O) is the present discounted
value of i’s profit when its stock of intangible capital is O:

V (O) = max
KY
i ,L

Y
i ,M

Y
i ,O

′,KO
i ,L

O
i ,M

O
i ,Yi,Pi

PiYi − r(KY
i +KO

i )− w(LYi + LOi )− q(MY
i +MO

i ) + βV (O′)

subject to the production functions (J.6), the law of motion for intangible capital (J.7), and the
household’s demand curve, Yi ≤ Y (Pi/P )−ε. Let cGi (r, w, q) and cHi (r, w, q) be the unit cost func-
tions associated with Gi and Hi respectively. Then the dynamic program can be simplified as

V (Oi) = max
Gi,Hi,O′i

PY 1/ε
(
Gφi O

′1−φ
i

) ε−1
ε − cGi Gi − cHi Hi + βV (O′i)

subject to O′i = Hi(1 − δO)Oi. The allocation is determined by the first order and envelope
conditions which, after imposing stationarity (Oi = O′i), imply

ε− 1

ε
PY 1/ε

(
Gφi O

1−φ
i

) ε−1
ε︸ ︷︷ ︸

PiYi

=
cGi Gi
φ

=
[1− β(1− δ)]cHi Oi

1− φ

and Hi = δOi. A first key implication is that the ratio of expenditures on tangible input to revenue
is

rKi + wLi + qMi

PiYi
=
cGi Gi + cHi Hi

PiYi
=
cGi Gi + cHi δOi

PiYi
=
ε− 1

ε

(
φ+

δO

1− β(1− δO)
(1− φ)

)
(J.8)

A second key implication is that the optimal price is

Pi =
ε

ε− 1

1

φφ(1− φ)1−φ (cGi )φ
[
(1− β(1− δ)) cHi

]1−φ
23The assumption of a unitary elasticity between tangible inputs and intangible capital in the production

of output is arguably a strong one. We discuss below the implications and considerations that led to this
choice.
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This implies that the plant’s expenditure on tangible inputs relative to total expenditures is

zi ≡
rKi + wLi + qMi

rK + wL+ qM
=
PiYi
PY

=
P 1−ε
i

P 1−ε =

(
(cGi )φ(cHi )1−φ)1−ε∑
ĩ

(
(cG
ĩ

)φ(cH
ĩ

)1−φ
)1−ε (J.9)

We are now in position to compute the aggregate elasticity of substitution. Just as in the baseline,
σi = d lnKi/Li

d lnw/r measures how plant i’s K/L ratio changes when factor prices change. This is a
reduced form elasticity that depends on how the plant substitutes between K and L in production
of both intangible capital and output. Similarly, ζi is the reduced form elasticity that measures
substitution between materials and the other primary tangible inputs. The exact arguments used
in Section 2.2 imply here that the aggregate elasticity between physical capital and labor is

σagg = (1− χ)σ̄ + χs̄M ζ̄ + χ(1− s̄M )

[
1 +

∑
i(αi − α) d ln zi

d lnw/rθi∑
i(αi − α)2(1− sMi )θi

]

Our estimates of ˆ̄σ and ˆ̄ζ match σ̄ and ζ̄ because these are estimated directly from how changes
in relative factor prices alter plants’ choices of physical capital, labor, and materials. Our baseline
estimate of the elasticity of substitution was computed as

σ̂agg = (1− χ)ˆ̄σ + χs̄M ˆ̄ζ + χ(1− s̄M )ε̂

where ε̂ was estimated from ratios of revenue to cost, ε̂
ε̂−1 = PiYi

rKi+wLi+qMi
. The difference between

the true aggregate elasticity and the baseline will thus be

σagg − σ̂agg = χ(1− s̄M )(Υ− ε̂)

where Υ ≡ 1 +

∑
i(αi−α)

d ln zi
d lnw/r

θi∑
i(αi−α)2(1−sMi )θi

, or using (J.9),

Υ ≡ 1 + (1− ε)

∑
i(αi − α)

[
φ

d ln cGi /r
d lnw/r + (1− φ)

d ln cHi /r
d lnw/r

]
θi∑

i(αi − α)2(1− sMi )θi

Υ depends on how tangible inputs are divided between producing intangible capital and pro-
ducing output directly. Unfortunately we do not observe this information. As an alternative, we
study three alternatives: (i) intangible capital is produced using only capital, (ii) intangible cap-
ital is produced using only labor, and (iii) intangible capital has the same factor intensity as the
production of output.

Before doing that, it will be useful to derive an expression for ε in terms of objects we can
measure or calibrate. Towards this, note that the ratio of investment expenditure on intangible
inputs relative to gross output is

IO

PY
=

∑
i I
O
i

PY
=

∑
i c
H
i Hi

PY
=

∑
i δ
OcHi Oi
PY

=

∑
i

δO

1−β(1−δO)
(1− φ) ε−1

ε PiYi

PY

=
ε− 1

ε
(1− φ)

δO

1− β(1− δO)
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We can then use (J.8) to write

ε̂− 1

ε̂
≡ rKi + wLi + qMi

PiYi
=
ε− 1

ε

(
φ+

δO

1− β(1− δO)
(1− φ)

)
=

ε− 1

ε

[
1−

(
(1− δO)(1− β)

δO

)
δO

1− β(1− δO)
(1− φ)

]
=

ε− 1

ε
− (1− δO)(1− β)

δO
IO

PY

or more simply
1

ε̂
=

1

ε
+

(1− δO)(1− β)

δO
IO

PY

Case 1: Intangible capital is produced using only capital

φ
d ln cGi /r

d lnw/r
= φ

wLYi + (1− α)qMY
i

cGi Gi
=
wLYi + (1− α)qMY

i
ε−1
ε PiYi

=
wLi + (1− α)qMi

ε−1
ε PiYi

=
rKi + wLi + qMi

ε−1
ε PiYi

wLi + (1− α)qMi

rKi + wLi + qMi

=
ε̂−1
ε̂
ε−1
ε

[
(1− sMi )(1− αi) + sMi (1− α)

]
Since

d ln cHi /r
d lnw/r = 0 by assumption, we have

Υ = 1 + (1− ε)

∑
i(αi − α)

[
φ

d ln cGi /r
d lnw/r + (1− φ)

d ln cHi /r
d lnw/r

]
θi∑

i(αi − α)2(1− sMi )θi

= 1 + (ε− 1)
ε̂−1
ε̂
ε−1
ε

=
1 + ε−1 − ε̂−1

ε−1

=
1− (1−δO)(1−β)

δO
IO

PY

ε̂−1 − (1−δO)(1−β)
δO

IO

PY

Case 2: Intangible capital is produced using only labor

φ
d ln cGi /r

d lnw/r
= φ

wLYi + (1− α)qMY
i

cGi Gi
= φ

(
1− rKY

i + αqMY
i

cGi Gi

)
= φ− rKY

i + αqMY
i

ε−1
ε PiYi

= φ− rKi + αqMi
ε−1
ε PiYi

= φ− rKi + wLi + qMi
ε−1
ε PiYi

rKi + αqMi

rKi + wLi + qMi

= φ−
ε̂−1
ε̂
ε−1
ε

[
(1− sMi )αi + sMi α

]
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Since
d ln cHi /r
d lnw/r = 1 by assumption, we have

Υ = 1 + (1− ε)

∑
i(αi − α)

[
φ

d ln cGi /r
d lnw/r + (1− φ)

d ln cHi /r
d lnw/r

]
θi∑

i(αi − α)2(1− sMi )θi

= 1 + (ε− 1)
ε̂−1
ε̂
ε−1
ε

=
1 + ε−1 − ε̂−1

ε−1

=
1− (1−δO)(1−β)

δO
IO

PY

ε̂−1 − (1−δO)(1−β)
δO

IO

PY

Case 3: Production of output and intangible capital have same factor intensity
By assumption, we have

d ln cGi /r

d lnw/r
=

d ln cHi /r

d lnw/r
= (1− sMi )(1− αi) + sMi (1− α)

which implies

Υ = 1 + (1− ε)

∑
i(αi − α)

[
φ

d ln cGi /r
d lnw/r + (1− φ)

d ln cHi /r
d lnw/r

]
θi∑

i(αi − α)2(1− sMi )θi
= ε =

1

ε̂−1 − (1−δO)(1−β)
δO

IO

PY

Notice that in all three cases, if either the depreciation rate δO or the discount factor β is
unity, then the baseline estimate recovers the true aggregate elasticity. If not, then we understate
the true elasticity. How big might the bias be? We estimated ε̂ = 4. A variety of sources argue
that investment in intangible output has grown from 5% of value added to 10% (Corrado et al.
(2009) and Nakamura (2010)), which translates to less than 5% of gross output.24 Depreciation
of intangible capital is difficult to measure because we do not observe stocks or prices, estimates
range from 20%− 70% (Corrado et al. (2009) and Li and Hall (2018)). To be conservative, we use
IO

PY = 5%, set the depreciation rate to 20%, and use a discount factor of β = 0.93. These imply
that the bias, σ̂agg − σagg = χs̄M (Υ − ε̂) for 1987 is equal to 0.012 in cases 1 and 2, and 0.009 in
case 3.

We conclude this section with some remarks about the choice of production function Gi. How
exactly intangible capital enters the production function is speculative, because we have no infor-
mation about the price or quantities of intangible capital. In general, the aggregate elasticity of
substitution between physical capital and labor would depend on the elasticity between tangible
inputs and intangible capital. Further, conditional on objects we can observe, ε would depend on
a weighted average of plants’ ratios of investment in intangible capital to gross output, rather than
the aggregate ratio. We do not know of any data that can discipline these features. We can show,
however, that even in the general case, if either β = 1 or δO = 1, our baseline estimate recovers
the true aggregate elasticity. Our calibration suggests that in practice (1 − β)(1 − δO) is small
enough that the additional generality would be quantitatively irrelevant. Given these considera-
tions, we imposed a unitary elasticity between tangible inputs and intangible capital to simplify
the exposition in this section.

24Note that estimates of the ratio of intangible capital to value added are for the entire economy, so we are
making the strong assumption that this ratio is the same for the manufacturing sector. In the manufacturing
sector, value added was roughly 47% of gross output in 1987.

92



J.3 Technology Choice

In this section, we extend the model so that plants can respond to changes in factor prices by
switching to an alternative technology. Using a parametric example inspired by Caselli and Coleman
(2006), we show that our baseline strategy recovers the aggregate elasticity of substitution. We
then generalize this result by relaxing the parametric assumptions.

A technology for plant i is a nested CES production function:

Yi =


[
(AiKi)

σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin

] σwithin

σwithin−1

ζwithin−1

ζwithin

+ (CiMi)
ζwithin−1

ζwithin


ζwithin

ζwithin−1

. (J.10)

Plant i chooses its factor-augmenting productivities Ai, Bi, Ci from a menu defined by the param-
eters Ai,Bi, Ci:{[

(Ai/Ai)1−σmenu + (Bi/Bi)1−σmenu
] 1−ζmenu

1−σmenu
+ (Ci/Ci)

1
1−ζmenu

} 1
1−ζmenu

≤ 1. (J.11)

When factor prices change, plant i can shift both its factor usage and its choice of technology.
In fact, one can define the envelope of plant i’s technology menu to be the output that it would
produce with the optimal technology choice. For any Ki, Li, Mi, the envelope corresponds to the
choice of factor-augmenting productivities that maximize (J.10) subject to (J.11). As we show in
Web Appendix J.3.1, we can solve for the envelope directly:

Yi =


[
(AiKi)

σtotal−1

σtotal + (BiLi)
σtotal−1

σtotal

] σtotal

σtotal−1

ζtotal−1

ζtotal

+ (CiMi)
ζtotal−1

ζtotal


ζtotal

ζtotal−1

(J.12)

where σtotal and ζtotal are defined to satisfy

1

σtotal − 1
=

1

σwithin − 1
+

1

σmenu − 1
1

ζtotal − 1
=

1

ζwithin − 1
+

1

ζmenu − 1

σwithin and ζwithin are within-technology elasticities, while σmenu and ζmenu regulate substitution
across technologies. σtotal and ζtotal incorporate adjustments on both margins. For example, for
a fixed technology, σwithin is the response of i’s capital-labor ratio to relative factor prices, Ki

Li
=(

Ai
Bi

)σwithin−1 (
r
w

)−σwithin
. Given any particular choice of factor inputs, i’s choice of technologies

will satisfy
(
AiKi
BiLi

)σwithin−1

σwithin =
(
Ai/Ai
Bi/Bi

)σmenu−1
. Together, these imply that the plant’s capital-labor

ratio will be Ki
Li

=
(
Ai
Bi

)σtotal−1 (
r
w

)−σtotal
.

With our methodology we are unable to distinguish between the within-technology and technology-
menu margins of adjustment, as our cross-sectional estimates capture changes along both. Fortu-
nately, distinguishing between the two margins is not necessary to build up to a long-run aggregate
elasticity; we want to capture both margins. (J.12) can be used as the starting point for Section 2,
which means that our baseline strategy can be used without modification to recover the aggregate
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elasticity.
While this example is designed so that the envelope of i’s technology menu takes a simple

nested CES form, we can apply the arguments of Section C.2 and characterize the local elasticity
of the envelope of any sufficiently smooth menu of technologies. In particular, if plant i can access
a menu of technologies Ti, and each technology τ ∈ Ti is a production function Gτ (K,L,M), then
the envelope of i’s technology menu is the reduced form production function

Fi(K,L,M) = max
τ∈Ti

Gτ (K,L,M).

Our estimates correspond to the properties of Fi. In addition, we further extend the argument to a
setting in which each plant faces a menu with a discrete set of technologies in Web Appendix J.3.2.
In that setting, a plant’s factor intensity may jump discretely in response to a marginal change
in factor prices if it switches technologies. Under an additional assumption that there is not an
atom of plants at the margin between two technologies, we show that the same logic prevails: our
baseline approach recovers the aggregate elasticity.

J.3.1 Smooth, Parametric Technology Choice

Given input choices Ki, Li, and Mi, consider the technology choice problem

max
Ai,Bi,Ci


[
(AiKi)

σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin

] σwithin

σwithin−1

ζwithin−1

ζwithin

+ (CiMi)
ζwithin−1

ζwithin


ζwithin

ζwithin−1

subject to{[
(Ai/Ai)1−σmenu + (Bi/Bi)1−σmenu

] 1−ζmenu
1−σmenu

+ (Ci/Ci)1−ζmenu
} 1

1−ζmenu

≤ 1 (J.13)

Proposition J.1 The maximized value of output is


[
(AiKi)

σtotal−1

σtotal + (BiLi)
σtotal−1

σtotal

] σtotal

σtotal−1

ζtotal−1

ζtotal

+ (CiMi)
ζtotal−1

ζtotal


ζtotal

ζtotal−1

(J.14)

where σtotal and ζtotal are defined to satisfy

1

σtotal − 1
=

1

σwithin − 1
+

1

σmenu − 1
1

ζtotal − 1
=

1

ζwithin − 1
+

1

ζmenu − 1
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Proof. Let λi be the multiplier on (J.13). Multiplying the FOCs for Ai, Bi, and Ci respectively
by Ki, Li, and Mi and imposing that (J.13) binds gives[
(AiKi)

σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin

]
σwithin

σwithin−1

ζwithin−1

ζwithin
−1

(AiKi)
σwithin−1

σwithin =

λi

[
(Ai/Ai)1−σmenu + (Bi/Bi)1−σmenu

] 1−ζmenu
1−σmenu−1

(Ai/Ai)1−σmenu[
(AiKi)

σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin

]
σwithin

σwithin−1

ζwithin−1

ζwithin
−1

(BiLi)
σwithin−1

σwithin =

λi

[
(Ai/Ai)1−σmenu + (Bi/Bi)1−σmenu

] 1−ζmenu
1−σmenu−1

(Bi/Bi)1−σmenu

(CiMi)
ζwithin−1

ζwithin = λi (Ci/Ci)1−ζmenu

Adding these together yields λi = 1. With this, the FOC for Ci can be expressed as

(CiMi)
ζwithin−1

ζwithin = (CiMi)

ζwithin−1

ζwithin
(ζmenu−1)

ζwithin−1

ζwithin
+ζmenu−1

= (CiMi)

1

1
(ζmenu−1)

+
ζwithin

ζwithin−1

= (CiMi)

1
1

(ζmenu−1)
+ 1
ζwithin−1

+1
= (CiMi)

1
1

ζtotal−1
+1

= (CiMi)
ζtotal−1

ζtotal (J.15)

While the FOCs for Ai and Bi imply the following two equations

(
AiKi

BiLi

)σwithin−1

σwithin

=

(
Ai/Ai
Bi/Bi

)1−σmenu

[
(AiKi)

σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin

] σwithin

σwithin−1

ζwithin−1

ζwithin

=
[
(Ai/Ai)1−σmenu + (Bi/Bi)1−σmenu

] 1−ζmenu
1−σmenu

The first implies that
(
AiKi
BiLi

)σwithin−1

σwithin
+σmenu−1

=
(
AiKi
BiLi

)σmenu−1
, which, along with the definition

of σtotal implies

(
AiKi

BiLi

)σwithin−1

σwithin

=

(
AiKi

BiLi

) σwithin−1

σwithin
(σmenu−1)

σwithin−1

σwithin
+σmenu−1

=

(
AiKi

BiLi

)σtotal−1

σtotal

(J.16)

Defining ρ = ζwithin−1
ζwithin

1
1−ζmenu , for shorthand, we can rewrite the second as

[
(AiKi)

σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin

] σwithin

σwithin−1
ρ

=
[
(Ai/Ai)1−σmenu + (Bi/Bi)1−σmenu

] 1
1−σmenu
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Factoring out the terms with BiLi from each side, we have

(AiKi

BiLi

)σwithin−1

σwithin

+ 1


σwithin

σwithin−1
ρ

(BiLi)
ρ =

[(
Ai/Ai
Bi/Bi

)1−σmenu

+ 1

] 1
1−σmenu

(Bi/Bi)

Using (J.16) and 1
1−σmenu = − σtotal

σtotal−1
+ σwithin

σwithin−1
, this can be rearranged as

(AiKi

BiLi

)σtotal−1

σtotal

+ 1


σwithin

σwithin−1
ρ

(BiLi)
ρ =

(AiKi

BiLi

)σtotal−1

σtotal

+ 1


1

1−σmenu (
BiLi
BiLi

)

=

(AiKi

BiLi

)σtotal−1

σtotal

+ 1

−
σtotal

σtotal−1
+ σwithin

σwithin−1 (
BiLi
BiLi

)

Collecting the terms with BiLi on the left hand side, this can be rearranged as

(BiLi)
σwithin−1

σwithin =

[
(AiKi)

σtotal−1

σtotal + (BiLi)
σtotal−1

σtotal

]σwithin−1

σwithin
σtotal

σtotal−1

1
1−ρ−1

(BiLi)
σtotal−1

σtotal

An analogous argument gives

(AiKi)
σwithin−1

σwithin =

[
(AiKi)

σtotal−1

σtotal + (BiLi)
σtotal−1

σtotal

] 1
1−ρ

σwithin−1

σwithin
σtotal

σtotal−1
−1

(AiKi)
σtotal−1

σtotal

Summing these two implies

(AiKi)
σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin =

[
(AiKi)

σtotal−1

σtotal + (BiLi)
σtotal−1

σtotal

] 1
1−ρ

σwithin−1

σwithin
σtotal

σtotal−1

Or, more simply,

[
(AiKi)

σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin

] σwithin

σwithin−1

=

[
(AiKi)

σtotal−1

σtotal + (BiLi)
σtotal−1

σtotal

] σtotal

σtotal−1

1
1−ρ

(J.17)

The definition ρ ≡ ζwithin−1
ζwithin

1
1−ζmenu implies that

ζwithin−1
ζwithin

1− ρ
=

ζwithin−1
ζwithin

1− ζwithin−1
ζwithin

1
1−ζmenu

=
1

ζwithin

ζwithin−1
− 1

1−ζmenu
=

1

1 + 1
ζwithin−1

+ 1
ζmenu−1

=
1

1 + 1
ζtotal−1

=
ζtotal − 1

ζtotal

which together (J.17) implies

[
(AiKi)

σwithin−1

σwithin + (BiLi)
σwithin−1

σwithin

] σwithin

σwithin−1

ζwithin−1

ζwithin

=

[
(AiKi)

σtotal−1

σtotal + (BiLi)
σtotal−1

σtotal

] σtotal

σtotal−1

ζtotal−1

ζtotal

This together with (J.15) implies that the maximized value of output is (J.14).

96



J.3.2 Discrete Technology Menu

In this section, we assume that each plant faces a discrete menu of technologies. When a plant
switches technologies, its factor intensity may jump discretely, altering the aggregate capital-labor
ratio. To simplify the exposition, we build on the simple example of Section 2.1 in which a single
industry is composed of a continuum of plants that do not use intermediate inputs.

Plants choose between a finite set of technology families j = 1, ..., J , where each technology
family consists of a constant returns to scale production function. When plant i uses technology
j, its unit cost function is Cij (r, w).25 Because plant i’s production possibilities are the upper
envelope of these production functions, its unit cost is Ci(r, w) = minj Cij(r, w).

For relative price ω = w/r, ji(ω) is i’s choice of technology at ω. Abusing notation, let αij(ω) ≡
Cijr(1,ω)
Cij(1,ω) be the plant’s choice of capital share under technology j and αi(ω) = αiji(ω)(ω) be plant

i’s actual capital share given its optimal technology choice. Similarly, let θi(ω) be i’s share of
industry expenditures on capital and labor, given its optimal choice of capital and labor as well as

the optimal choices of other plants. Finally, let σij(ω) ≡ Cij(1,ω)Cijrw(1,ω)
Cijr(1,ω)Cijw(1,ω) be the local elasticity of

substitution of technology j for firm i.
As before, the aggregate capital share is α(ω) =

∫
i αi(ω)θi(ω)di. The aggregate elasticity of

substitution is:

σagg(ω) =
1

α(ω)[1− α(ω)]

dα(ω)

d lnω
=

1

α(ω)[1− α(ω)]
lim
ω′→ω

∫ [
αi(ω

′)θi(ω
′)− αi(ω)θi(ω)

]
di

We show below in Web Appendix J.3.3 that (suppressing the argument ω)

σagg = (1− χ)σ̄ + χε (J.18)

where σ̄ =
∫ αi(1−αi)∫

αi′ (1−αi′di′)
σidi and i’s local elasticity σi is defined as

σi ≡ σiji +
∑
j′ 6=ji

δ

(
ln

Ci
Cij′

) (
αij′ − αi

)2
αi(1− αi)

where σiji is the elasticity of substitution of the technology that i uses and δ(·) is the Dirac delta
function.

σi incorporates two types of adjustment. A plant may keep the same technology and adjust
factor shares smoothly, or it may switch technologies, in which case its factor shares might jump
discontinuously. This jump is captured by the Dirac delta function. Since the measure of plants
that might jump has measure zero, the total impact of these jumps is of the same order of magnitude
as the cumulative impact of all plants adjusting smoothly.26

Next, we note that an estimate of σ̄ derived from (C.1) in Section C.2, the average plant-
level elasticity when elasticities are heterogeneous across plants and defined locally, incorporates

25As simple examples, plants may differ in their productivity when using a technology, and these pro-
ductivity differences could be Hicks-neutral (Cij(r, w) = 1

qij
C̃j(r, w)), factor- augmenting (Cij(r, w) =

C̃j(r/Aij , w/Bij)), or non-neutral in an arbitrary way (Cij(r, w) = C̃j(r, w; qi,j)).
26When plant i switches technologies, there is no corresponding jump in θi, its expenditure on capital and

labor, because its marginal cost does not jump; this is simply a manifestation of Berge’s Maximum Theorem.
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the discontinuous response of factor shares when plants switch technologies. As before, the co-
efficient delivers an estimate (up to weighting of observations) of how the average capital share
responds to changes in factor prices. With technology choice, the estimator recovers d

d lnωE[αi] =
lim∆→0

∫
[αi(ω

′)− αi(ω)] di. In Web Appendix J.3.3 below, we show that this is

d

d lnω
E[αi] =

d
(

1
I

∫
i αi(ω)di

)
d lnω

=
1

I

∫
i
αi(1− αi)(σi(ω)− 1)di. (J.19)

As a consequence, the strategy that computes the aggregate elasticity using the estimate from
Section C.2 can also be used without modification to recover the aggregate elasticity in this context.
With technology choice, a plant’s production function may be discontinuous because it is the
envelope of several technology-specific production functions. However, this discontinuity does not
add any additional economic forces: aggregate substitution is still determined by within-plant
substitution and how consumers substitute across plants in response to their changing price. The
only complication is that a plant’s factor shares may jump, so additional notation is needed to
characterize the within-plant substitution. We have shown that, given our estimation strategy, this
distinction is not an important one.

J.3.3 Proofs for Discrete Technology Menu

Let I(j;ω) be the set of plants that would choose technology j if factor prices were ω. By extension,
let I(j, j′;ω, ω′) be the set of plants for whom technology j would be optimal if factor prices
were ω and j′ would be optimal if factor prices were ω′. We are interested in the derivative
dα(ω)
d lnω = limω′→ω

α(ω′)−α(ω)
ω′/ω−1 . Since α(ω) =

∫
αi(ω)θi(ω)di, we can rearrange this as

dα(ω)

d lnω
= lim

ω′→ω

1

ω′/ω − 1

∫
i

[
αi(ω

′)θi(ω
′)− αi(ω)θi(ω)

]
di

= lim
ω′→ω

∫
i

αi(ω
′)− αi(ω)

ω′/ω − 1
θ(hi, ω)di+ lim

ω′→ω

∫
i
αi(ω

′)
θi(ω

′)− θi(ω)

ω′/ω − 1
di

Lemma J.1

lim
ω′→ω

∫
i

αi(ω
′)− αi(ω)

ω′/ω − 1
θi(ω)di =

∫
i
αi(ω)(1− αi(ω))(σi(ω)− 1)θi(ω)di

where

σi(ω) ≡ σiji(ω)(ω) +
∑

j′ 6=ji(ω)

δ

(
ln

Ci(ω)

Cij′(ω)

) (
αij′(ω)− αi(ω)

)2
αi(ω)(1− αi(ω))

Proof. Define Qjj′(ω) ≡ limω′→ω
∫
I(j,j′;ω,ω′)

αi(ω
′)−αi(ω)

ω′/ω−1 θi(ω)di so that

lim
ω′→ω

∫
i

αi(ω
′)− αi(ω)

ω′/ω − 1
θi(ω)di =

∑
j,j′

Qjj′(ω).

For plants that choose to use technology j both when factor prices are ω and ω′, we have

lim
ω′→ω

αij(ω
′)− αij(ω)

ω′/ω − 1
= αij(ω) [1− αij(ω)] (σij(ω)− 1)
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This along with limω′→ω I(j, j;ω, ω′) = I(j, ω) yields

Qjj(ω) =

∫
I(j;ω)

αi(ω)(1− αi(ω))(σij(ω)− 1)θi(ω)di

We next turn to characterizing Qjj′(ω) for j 6= j′. Let cij(ω) ≡ Cij(1, ω). Consider plant
i ∈ I(j, ω). For that plant to be in the set I(j, j′;ω, ω′), it must be that j′ is its preferred technology

when factor prices are ω′, i.e., cij′(ω
′) ≤ minj′′ 6=j′ cij′′(ω

′) or equivalently ln
minj′′ 6=j′ cij′′ (ω

′)

cij′ (ω
′) ≥ 0.

Letting H be the Heaviside step function, we can express Qjj′ as

Qjj′(ω) = lim
ω′→ω

∫
I(j,j′;ω,ω′)

αij′(ω
′)− αij(ω)

ω′/ω − 1
θ(hi, ω)di

= lim
ω′→ω

∫
I(j,ω)

H
(

ln
minj′′ 6=j′ cij′′ (ω

′)

cij′ (ω
′)

)
ω′/ω − 1

[
αij′(ω

′)− αij(ω)
]
θ(hi, ω)di

Using L’Hopital’s rule gives

Qjj′(ω) =

∫
I(j;ω)

lim
ω′→ω

H ′
(

ln
minj′′ 6=j′ cij′′(ω

′)

cij′(ω′)

) d ln
minj′′ 6=j cij′′ (ω

′)

cij′ (ω
′)

d lnω′
[
αij′(ω

′)− αij(ω)
]
θ(hi, ω)di

In the limit as ω′ → ω, j = arg minj′′ 6=j′ cij′′(ω). In addition, Shephard’s Lemma implies
d ln

cij(ω′)
cij′ (ω

′)

d lnω′ =
(1− αij(ω′))− (1− αij′(ω′)) = αij′(ω

′)− αij(ω′). With these, we have

Qjj′(ω) =

∫
I(j;ω)

H ′
(

ln
cij(ω)

cij′(ω)

)[
αij′(ω

′)− αij(ω)
]2
θ(hi, ω)di

The desired result follows from summing across j, j′ and noting that the derivative of the Heaviside
step function is the Dirac delta function.

Lemma J.2

lim
ω′→ω

∫
i
αi(ω

′)
θi(ω

′)− θi(ω)

ω′/ω − 1
di = (ε− 1)

∫
i
[αi(ω)− α(ω)]2θi(ω)di

Proof. We can express the limit as

lim
ω′→ω

∫
i
αi(ω

′)
θi(ω

′)− θi(ω)

ω′/ω − 1
di =

∑
j,j′

lim
ω′→ω

∫
I(j,j′;ω,ω′)

αi(ω
′)
θi(ω

′)− θi(ω)

ω′/ω − 1
di

For plants that choose to use technology j both when factor prices are ω and ω′, we have, following
the logic of (7),

lim
ω′→ω

θij(ω
′)− θij(ω)

ω′/ω − 1
= [αij(ω)− α(ω)] θij(ω)(ε− 1)

This along with limω′→ω I(j, j;ω, ω′) = I(j, ω) yields

lim
ω′→ω

∫
I(j,j;ω,ω′)

αi(ω
′)
θi(ω

′)− θi(ω)

ω′/ω − 1
di =

∫
I(j;ω)

(αi(ω)− α(ω))2(ε− 1)θi(ω)di
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For j 6= j′, we show that the limit is zero. By Berge’s Maximum Theorem, i’s unit cost is contin-

uous in ω, and therefore θi(ω) is continuous in ω. Further, for i ∈ I(j, j′;ω, ω′), limω′→ω
θi(ω

′)/θi(ω)−1
ω′/ω−1

is bounded below by [min{αi(ω), αi(ω
′)} − α] (ε−1) and bounded above by [max{αi(ω), αi(ω

′)} − α] (ε−
1). The second term is therefore zero because in the limit, the set limω′→ω I(j, j′;ω, ω′) has zero
measure.

Together, Lemma J.1 and Lemma J.2 deliver the following proposition characterizing the ag-
gregate capital-labor elasticity of substitution:

Proposition J.2 With technology choice, the aggregate elasticity of substitution is (suppressing
the argument ω)

σagg = (1− χ)σ̄ + χε

where σ̄ =
∫
i

αi(1−αi)∫
i′ αi′ (1−αi′ )

σidi and σi is defined as in Lemma J.1.

Proof. This follows from the previous two lemmas and the strategy of Appendix A.

Proposition J.3
d
(∫
i αi(ω)di

)
d lnω

=

∫
i
αi(ω)(1− αi(ω))(σi(ω)− 1)di

Proof. The proof follows Lemma J.1 almost exactly, with the only exception that θi(ω) is replaced
by 1

I .

J.4 Local vs. National Elasticities

In this section we examine several reasons why the response of plants’ capital-labor ratios to local
factor prices might differ from the response to a national change.27 Our identification strategy has
focused on studying how plant capital-labor ratios respond to local factor prices. There are a few
reasons why this may differ from plants’ response to a nationwide change in the wage. It is, of
course, the latter which is relevant for an aggregate elasticity at the national level. While these
issues are seldom discussed in the literature, they are relevant for any estimate of an elasticity of
substitution at a level of aggregation smaller than the entire world.
Sorting

Our estimates do not account for the possibility that plants select locations in response to
factor prices. To see why this might matter, consider the following extreme example: Suppose
plants cannot adjust their factor usage but can move freely. Then we would expect to find more
labor intensive plants in locations with lower wages. A national increase in the wage would not,
however, change any plant’s factor usage. Thus, to the extent that this channel is important, our
estimated elasticity will overstate the true elasticity.

Plants’ ability to sort across locations likely varies by industry. We would expect industries
in which plants are more mobile to be more clustered in particular areas. This could depend, for
example, on how easily goods can be shipped to other locations. Raval (2019) addressed this by
looking at a set of ten large four-digit industries located in almost all MSAs and states. These are
industries for which we would expect sorting across locations to be least important. The leading
example of this is ready-mixed concrete; because concrete cannot be shipped very far, concrete

27The distinction has been emphasized recently in the debate about the size of government spending
multipliers; see Beraja et al. (forthcoming).
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plants exist in every locality. Elasticities for these industries are similar to the estimates for all
industries in our baseline, with average elasticities of 0.40 for 1987, 0.51 for 1992, and 0.38 for 1997.
Within-Firm Coordination

In our baseline model, we assumed that each plant independently selects its factor intensity in
response to local factor prices. It is possible, however, that a firm that operates plants in many
locations might derive some scale economy by operating all of its plants at similar capital-labor
ratios. If this is the case, then a change in factor prices in one location would, by altering the
choices of these multi-unit firms, affect factor intensities in other locations. A potential problem for
our approach is that, in such an environment, comparing factor intensities across locations would
not reveal the full extent of substitution in response to factor prices.28 Thus our estimate would
understate the true elasticity. One can gauge the importance of this channel by estimating an
elasticity of substitution among the subset of plants that belong to multi-unit firms. If this channel
is important, one would expect that plants in multi-unit firms would respond less to their local
wages than standalone plants. However, column 4 of Table II indicates that the estimated elasticity
among this subset is higher than our OLS estimates, suggesting that this channel is not of first
order importance.
The Technological Frontier

A similar issue may arise when we consider changes in the technological frontier. A change in
factor prices in one location might induce the creation of intermediates that favor particular tech-
nologies. The interpretation of our estimate depends on whether those intermediates are available
nationwide (as assumed in Section 4.3), or only locally.
Assessment

One way to gauge the importance of these mechanisms is to ask how factor shares in a location
respond to the wage in nearby locations. For example, plants that move are more likely to move to
nearby locations. To the extent that moving across locations is important, an decrease in the wage
in a nearby location would induce the most labor intensive plant to move to that nearby location,
raising the average local capital share. Similarly, a decline in the wage in a nearby location may
induce the creation of intermediate inputs that favor capital. To the extent that the intermediates
are also available locally, these would also favor capital locally, and lower the average local capital
share.

A regression of local factor shares on local wages and the average wages of all other locations in
the state can reveal the impact of these mechanisms. Note that it can only reveal the net impact
of all of them; we cannot distinguish whether neither mechanism matters or that they both matter
but offset each other. Fortunately it is the net effect that is relevant for informing us about the
gap between the cross-sectional differences and national changes. When we run this regression, we
cannot reject that the net impact of both mechanisms is zero. See Web Appendix C.6 for these
results.29

28As an extreme example, suppose the economy consisted of a single firm that operated in two locations
and chose a common capital-labor ratio for its two plants. Our methodology would never uncover differences
in capital-labor ratios across locations no matter how much the firm adjusted this common ratio.

29As discussed above, such a regressions cannot pick up any induced changes in the technological frontier
that are truly global.
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