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Abstract

We develop a framework to estimate the aggregate capital-labor elasticity of substitution by ag-

gregating the actions of individual plants. The aggregate elasticity reflects substitution within

plants and reallocation across plants; the extent of heterogeneity in capital intensities deter-

mines their relative importance. We use micro data on the cross-section of plants to build up to

the aggregate elasticity at a point in time. Interpreting our econometric estimates through the

lens of several different models, we find that the aggregate elasticity for the US manufacturing

sector is in the range of 0.5-0.7, and has declined slightly since 1970. We use our estimates to

measure the bias of technical change and assess the decline in labor’s share of income in the

US manufacturing sector. Mechanisms that rely on changes in the relative supply of factors,

such as an acceleration of capital accumulation, cannot account for the decline.
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1 Introduction

Over the last several decades, labor’s share of income in the US manufacturing sector has

fallen by more than 15 percentage points, and its share of aggregate income has declined by

8 percentage points. A variety of mechanisms have been proposed to explain declining labor

shares. Some have proposed that the decline originated in movements in relative supplies of

capital and labor.1 Others have proposed that the change reflects a decline in demand for

labor relative to capital, due to changes in the pace of automation or offshoring.

The aggregate capital-labor elasticity of substitution is a crucial input into assessing the

relevance of these mechanisms, as Hicks (1932) first pointed out. Armed with this elasticity,

one can measure the shift in demand for labor relative to capital and its contribution to the

labor share decline, or assess the contribution of any change in relative supply.

Unfortunately, obtaining the elasticity is difficult; Diamond et al. (1978) proved that the

elasticity cannot be identified from time series data on output, inputs, and marginal products

alone. Instead, identification requires factor price movements that are independent of the

bias of technical change.2

One approach to the Diamond et al. (1978) critique is to place parametric assumptions

on the bias of technical change to identify the elasticity with aggregate time series data.

The most common assumptions have been that there has been no bias or a constant bias

over time. Leon-Ledesma et al. (2010) demonstrated that, even under such assumptions,

it is difficult to obtain the true aggregate elasticity. Not surprisingly, estimates using this

approach range widely.3

The second approach uses micro production data with more plausibly exogenous variation

1Piketty (2014) maintained that declining labor shares resulted from increased capital accumulation, and
Karabarbounis and Neiman (2014) argued that they stem from investment-specific technical change which
also increased the supply of capital.

2This is one incarnation of the familiar point that to estimate an elasticity of demand (in this case, relative
factor demand), one needs an instrument for supply.

3Although Berndt (1976) found a unitary elasticity of substitution in the US time series assuming neutral
technical change, Antras (2004) and Klump et al. (2007) subsequently found estimates from 0.5 to 0.9
allowing for biased technical change. Karabarbounis and Neiman (2014) estimate an aggregate elasticity of
1.25 using cross-country panel variation in capital prices. Piketty (2014) estimates an aggregate elasticity
between 1.3 and 1.6. Herrendorf et al. (2015) estimate an elasticity of 0.84 for the US economy as a whole
and 0.80 for the manufacturing sector. Alvarez-Cuadrado et al. (2018) estimate an elasticity of 0.78 for the
manufacturing sector. See Chirinko (2008) and Raval (2017) for a meta-analysis of the estimates.
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in factor prices, and yields the micro capital-labor elasticity of substitution. Houthakker

(1955), however, famously showed that the micro and macro elasticities can be very different;

an economy of Leontief micro units can have a Cobb–Douglas aggregate production function.4

Given Houthakker’s result, it is unclear whether the micro elasticity can help answer the

many questions that hinge on the aggregate elasticity.

In this paper, we show how the aggregate elasticity of substitution can be recovered

from the plant-level elasticity. Building on Sato (1975), the aggregate elasticity is a convex

combination of the plant-level elasticity of substitution and the elasticity of demand in our

baseline model.5 In response to a wage increase, plants substitute towards capital. In

addition, capital-intensive plants gain market share from labor-intensive plants. The degree

of heterogeneity in capital intensities determines the relative importance of within-plant

substitution and reallocation. For example, when all plants produce with the same capital

intensity, there is no reallocation of resources across plants. In addition, the increased wage

could cause the entry of capital-intensive plants and exit of labor-intensive plants.

Using this framework, we build the aggregate capital-labor elasticity for the US manu-

facturing sector from its individual components. We estimate micro production and demand

parameters. Since Levhari (1968), it has been well known that Houthakker’s result of a

unitary elasticity of substitution is sensitive to the distribution of capital intensities. Rather

than making distributional assumptions, we directly measure the empirical distribution using

cross-sectional micro data.

Thus, given the set of plants that existed at a point in time, we estimate the aggregate

elasticity of substitution for the manufacturing sector at that time.6 Our strategy allows both

the aggregate elasticity and the bias of technical change to vary freely over time, opening

up a new set of questions. Because our identification does not impose strong parametric

assumptions on the time path of the bias, our approach is well suited for measuring how

4Houthakker (1955) assumed that factor-augmenting productivities follow independent Pareto distribu-
tions. The connection between Pareto distributions and a Cobb-Douglas aggregate production function is
also emphasized in Jones (2005), Lagos (2006), Luttmer (2012), Mangin (2017), and Boehm and Oberfield
(2018).

5Sato (1975) showed this for a two-good economy. See also Miyagiwa and Papageorgiou (2007) and
Rognlie (2014).

6To avoid tedious repetition, we occasionally use the term “aggregate elasticity” to refer to the aggregate
elasticity for the manufacturing sector.
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the bias has varied over time and how it has contributed to the decline in labor’s share of

income. We can also examine how the aggregate elasticity has changed over time.

In Section 3 we estimate the aggregate elasticity for the US manufacturing sector using

the US Census of Manufactures. As in Raval (2019), We use the estimates of cross-sectional

differences in local wages to estimate plant-level elasticities of substitution. To account

for the potential endogeneity of the local wage to technological differences, we employ three

different instruments for the supply of labor facing manufacturing plants. These instruments

include a set of climate-based amenities as well as shift-share variables from Bartik (1991) and

Beaudry et al. (2012). Across years and specifications, estimates of the plant-level elasticity

of substitution lie roughly between 0.3 and 0.5. Given the heterogeneity in capital shares

and our estimates of other parameters, the aggregate elasticity for the manufacturing sector

is between 0.5 and 0.7. Reallocation thus accounts for roughly one-third of substitution.

Examining changes over time, we find that the aggregate elasticity has fallen slightly from

1972 to 2007.

In Section 4, we incorporate additional channels of adjustment to factor price changes.

We show that, in an environment that incorporates entry and exit, our baseline estimate is

an upper bound for the aggregate elasticity: our estimates based on cross-sectional variation

reflect how the local average of factor shares responds to local factor prices, and thus capture

both within-plant substitution and entry and exit. We can also derive a lower bound using

dynamic panel estimates which capture only within-plant substitution. Given our estimates,

the range between our lower and upper bound are relatively small.

We next allow for shifts in the technological frontier, and show the elasticity that incorpo-

rates the change in the frontier is between our baseline estimate and one. We also consider

several additional margins of adjustment, including adjustment costs and substitution to

intangible capital, and examine the implications of these forces for the aggregate elasticity

for the manufacturing sector.

In Section 5, we use our estimate of the aggregate elasticity for the manufacturing sector

to decompose the decline in labor’s share of income in that sector since 1970. The bias of

technical change contributes to a decline in the labor share of 20 percentage points from

1970 to 2010, with an ongoing decline that accelerates starting in 2000. The rising cost of
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labor relative to capital did not fully offset the bias. In contrast to the acceleration of the

bias after 2000, the contribution of factor prices to the labor share exhibited little variation

over time, and does not match the accelerating decline of the labor share.

2 Theory

This section characterizes the aggregate elasticity of substitution between capital and labor

in terms of production and demand elasticities of individual plants. We begin with a simpli-

fied environment in which we describe the basic mechanism and intuition, and then enrich

the model by incorporating materials and allowing for heterogeneity across industries. We

then incorporate entry and exit. A number of features—shifts in the technological frontier,

adjustment costs, wedges, and intangible capital—are omitted from our benchmark model.

We postpone a discussion of these until Section 4.

2.1 Simple Example

Consider a large set of plants I whose production functions share a common, constant elas-

ticity of substitution between capital and labor, σ. A plant produces output Yi from capital

Ki and labor Li using the following CES production function:

Yi =
[
(AiKi)

σ−1
σ + (BiLi)

σ−1
σ

] σ
σ−1

(1)

Productivity differences among plants are factor augmenting: Ai is i’s capital-augmenting

productivity and Bi i’s labor-augmenting productivity.

Consumers have Dixit–Stiglitz preference across goods, consuming the bundle Y =(∑
i∈I D

1
ε
i Y

ε−1
ε

i

) ε
ε−1

. Plants are monopolistically competitive, so each plant faces an isoelas-

tic demand curve with a common elasticity of demand ε > 1.

Among these plants, aggregate demand for capital and labor are defined as K ≡
∑

i∈I Ki

and L ≡
∑

i∈I Li respectively. We define the aggregate elasticity of substitution, σagg, to be

the partial equilibrium response of the aggregate capital-labor ratio, K/L, to a change in
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relative factor prices, w/r:7

σagg ≡ d lnK/L

d lnw/r
(2)

We neither impose nor derive a parametric form for an aggregate production function. Given

the allocation of capital and labor, σagg simply summarizes, to a first order, how a change

in factor prices would affect the aggregate capital-labor ratio.

Let αi ≡ rKi
rKi+wLi

and α ≡ rK
rK+wL

denote the cost shares of capital for plant i and in

aggregate. The plant-level and aggregate elasticities of substitution are closely related to the

changes in these capital shares:

σ − 1 =
d ln rKi/wLi

d lnw/r
=

d lnαi/(1− αi)
d lnw/r

=
1

αi(1− αi)
dαi

d lnw/r
(3)

σagg − 1 =
d ln rK/wL

d lnw/r
=

d lnα/(1− α)

d lnw/r
=

1

α(1− α)

dα

d lnw/r
(4)

The aggregate cost share of capital can be expressed as an average of plant capital shares,

weighted by size:

α =
∑
i∈I

αiθi (5)

where θi ≡ rKi+wLi
rK+wL

denotes plant i’s expenditure on capital and labor as a fraction of

the aggregate expenditure. To find the aggregate elasticity of substitution, we can simply

differentiate (5):

dα

d lnw/r
=

∑
i∈I

dαi
d lnw/r

θi +
∑
i∈I

αi
dθi

d lnw/r

Using equations (3) and (4), this can be written as

σagg − 1 =
1

α(1− α)

∑
i∈I

αi(1− αi)(σ − 1)θi +
1

α(1− α)

∑
i∈I

αiθi
d ln θi

d lnw/r
(6)

The first term on the right hand side is a substitution effect that captures the change in

7Since production and demand are homogeneous of degree one, a change in total spending would not
alter the aggregate capital-labor ratio. We address non-homothetic environments in Web Appendix G.2.4.
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factor intensity holding fixed each plant’s size, θi. The plant-level substitution elasticity σ

measures how much an individual plant changes its mix of capital and labor in response to

changes in factor prices. The second term is a reallocation effect that captures how plants’

sizes change with relative factor prices. By Shephard’s Lemma, a plant’s cost share of capital

αi measures how relative factor prices affect its marginal cost. When wages rise, plants that

use capital more intensively gain a relative cost advantage. Consumers respond to the

subsequent changes in relative prices by shifting consumption toward the capital intensive

goods. This reallocation effect is larger when demand is more elastic, because customers

respond more to changing relative prices. Formally, the change in i’s relative expenditure

on capital and labor is

d ln θi
d lnw/r

= (ε− 1) (αi − α) (7)

After some manipulation (see Appendix A for details), the industry elasticity of substitution

is a convex combination of the micro elasticity of substitution and elasticity of demand:

σagg = (1− χ)σ + χε (8)

where χ ≡
∑

i∈I
(αi−α)2
α(1−α) θi.

The first term, (1− χ)σ, measures substitution between capital and labor within plants.

The second term, χε, captures reallocation between capital- and labor-intensive plants.

We call χ the heterogeneity index. It is proportional to the cost-weighted variance of

capital shares and lies between zero and one.8 When each plant produces at the same capital

intensity, χ is zero and there is no reallocation across plants. Each plant’s marginal cost

responds to factor price changes in the same way, so relative output prices are unchanged.

In contrast, if some plants produce using only capital while all others produce using only

labor, all factor substitution is across plants and χ is one. When there is little variation in

capital intensities, within-plant substitution is more important than reallocation.

8A simple proof:
∑
i∈I (αi − α)

2
θi =

∑
i∈I α

2
i θi − α2 ≤

∑
i∈I αiθi − α2 = α − α2 = α(1− α). It follows

that χ = 1 if and only if each plant uses only capital or only labor (i.e., for each i, αi ∈ {0, 1}).
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2.2 Baseline Model

This section describes the baseline model we will use in our empirical implementation. The

baseline model extends the previous analysis by allowing for heterogeneity across industries

and using a production structure in which plants use materials in addition to capital and

labor.

Let N be the set of industries and In be the set of plants in industry n. We assume that

each plant’s production function has a nested CES structure.

Assumption 1 Plant i in industry n produces with the production function

Fni (Kni, Lni,Mni) =

([
(AniKni)

σn−1
σn + (BniLni)

σn−1
σn

] σn
σn−1

ζn−1
ζn

+ (CniMni)
ζn−1
ζn

) ζn
ζn−1

(9)

so its elasticity of substitution between capital and labor is σn. Further, i’s elasticity of

substitution between materials and its capital-labor bundle is ζn.

We also assume that demand has a nested structure with a constant elasticity at each

level of aggregation. Such a structure is consistent with a representative consumer whose

preferences exhibit constant elasticities of substitution across industries and across varieties

within each industry:

Y ≡

[∑
n∈N

D
1
η
n Y

η−1
η

n

] η
η−1

, Yn ≡

(∑
i∈In

D
1
εn
ni Y

εn−1
εn

ni

) εn
εn−1

(10)

This demand structure implies that each plant in industry n faces a demand curve with

constant elasticity εn. Letting q be the price of materials, each plant maximizes profit

max
Pni,Yni,Kni,Lni,Mni

PniYni − rKni − wLni − qMni

subject to the technological constraint Yni = Fni (Kni, Lni,Mni) and the demand curve Yni =

Yn(Pni/Pn)−εn , where Pn ≡
(∑

i∈In DniP
1−εn
ni

) 1
1−εn is the price index for industry n.

The industry-level elasticity of substitution between capital and labor for industry n

measures the response of the industry’s capital-labor ratio to a change in relative factor
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prices:

σNn ≡
d lnKn/Ln

d lnw/r

The derivation of this industry elasticity of substitution follows Section 2.1 up to (6). As

before, αni = rKni
rKni+wLni

is plant i’s capital share of non-materials cost and θni = rKni+wLni
rKn+wLn

plant i’s share of industry n’s expenditure on capital and labor. We will show that reallo-

cation depends on plants’ expenditures on materials. We denote plant i’s materials share of

its total cost as sMni ≡
qMni

rKni+wLni+qMni
. Because producers of intermediate inputs use capital

and labor, changes in r and w would affect the price of materials. We define αM ≡ d ln q/w
d ln r/w

to be the capital content of materials.

Proposition 1 Under Assumption 1, the industry elasticity of substitution is:

σNn = (1− χn)σn + χn
[
(1− s̄Mn )εn + s̄Mn ζn

]
(11)

where χn =
∑

i∈In
(αni−αn)2
αn(1−αn) θni and s̄Mn =

∑
i∈In (αni−αn)(αni−α

M )θnis
M
ni∑

i∈In (αni−αn)(αni−α
M )θni

The proofs of all propositions are contained in Appendix A.

Relative to (8), the demand elasticity is replaced by a convex combination of the elasticity

of demand, εn, and the elasticity of substitution between materials and the capital-labor

bundle, ζn. This composite term measures the change in i’s share of its industry’s expenditure

on capital and labor, θni. Intuitively, a plant’s expenditure on capital and labor can fall

because its overall scale declines or because it substitutes towards materials. The cost share

of materials determines the relative importance of each. As materials shares approach zero,

all shifts in composition are due to changes in scale, and Proposition 1 reduces to (8). In

contrast, as a plant’s materials share approaches one, changes in its cost of capital and labor

have a negligible impact on its marginal cost, and hence a negligible impact on its sales.

Rather, the change in its expenditure on capital and labor is determined by substitution

between materials and the capital-labor bundle.

If we dispense with the assumption that production functions take the nested CES func-

tional form of Assumption 1, and maintain only that they exhibit constant returns to scale,

the resulting expression for the industry elasticity of substitution is identical to (11) except
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that the parameters σn and ζn are replaced with weighted averages of the plants’ local elas-

ticities, σ̄n ≡
∑

i∈In
αni(1−αni)θni∑

i′∈In αni′ (1−αni′ )θni′
σni and ζ̄n ≡

∑
i∈In

(αni−αn)(αni−αM )sMniθni∑
i′∈In (αni′−αn)(αni′−α

M )sM
ni′θni′

ζni.
9

The aggregate elasticity parallels the industry elasticity; aggregate capital-labor substi-

tution consists of substitution within industries and reallocation across industries. Propo-

sition 2 shows that expression for the aggregate elasticity parallels the expressions for the

industry elasticity in Proposition 1 with plant and industry variables replaced by industry

and aggregate variables respectively.

Proposition 2 The aggregate elasticity between capital and labor, σagg = d lnK/L
d lnw/r

, is:

σagg = (1− χagg) σ̄N + χagg
[
(1− s̄M)η + s̄M ζ̄N

]
(12)

where χagg ≡
∑

n∈N
(αn−α)2
α(1−α) θn, s̄M ≡

∑
n∈N

(αn−α)(αn−αM )θn∑
n′∈N (αn′−α)(αn′−αM )θn′

sMn ,

σ̄N ≡
∑

n∈N
αn(1−αn)θn∑

n′∈N αn′ (1−αn′ )θn
σNn , and ζ̄N ≡

∑
n∈N

(αn−α)(αn−αM )θnsMn∑
n′∈N (αn′−α)(αn′−αM )θn′s

M
n′
ζNn .

Substitution within industries depends on σ̄N , a weighted average of the industry elasticities

of substitution defined in Proposition 1. ζ̄N is similarly a weighted average of industry level

elasticities of substitution between materials and non-materials (we relegate the expression

ζNn to Appendix A). χagg is the cross-industry heterogeneity index and is proportional to

the cost-weighted variance of industry capital shares.

2.3 Entry and Exit

This section incorporates entry and exit by introducing entry and overhead costs. A large

continuum of entrepreneurs can each draw a random technology by paying an entry cost

of fE units of final output. The technology τ is a constant-returns-to scale production

function drawn from an exogenous distribution with CDF T (τ). After observing the draw,

the entrepreneur can operate a plant with that technology if she is willing to pay an overhead

9The local elasticities σni and ζni are defined to satisfy σni − 1 ≡ d ln rKni/wLni
d lnw/r and ζni − 1 ≡

1
αM−αni

d ln
qMni

rKni+wLni

d lnw/r . The definition of σni is straightforward but ζni is more subtle; see Appendix A

for details. If i’s production function takes a nested CES form as in Assumption 1, σni and ζni would equal
σn and ζn respectively. Here, however, these elasticities are not parameters of a production function. Instead,
they are defined locally in terms of derivatives of i’s production function evaluated at the cost-minimizing
input bundle. Exact expressions for σni and ζni are given in Web Appendix G.1.

9



cost of fO units of final output.10 Free entry determines the price level. Entry costs are

incurred before production, and we assume that they are not recorded in our data.

Let Eτ be an indicator of whether plant τ chooses to operate. Should the plant enter, we

denote its capital share by ατ and its expenditure on capital and labor relative to the average

expenditure by θτ . Thus the aggregate capital share can be expressed as α =
∫
ατθτEτdT (τ).

Again, we can derive an expression for the aggregate elasticity of substitution by differen-

tiating each side with respect to relative factor prices. One subtlety that emerges in this

context is that aggregate production is no longer homogeneous of degree one in primary

inputs because gains from variety can alter the cost of intermediate inputs relative to the

cost of capital and labor. We follow Robinson (1933) and define the aggregate elasticity as

the derivative holding fixed the level of aggregate output. We show in Web Appendix H that

in an economy with a single industry, that aggregate elasticity of substitution is

σagg = (1− χ)σ̄ +

∫
ατ − α
α(1− α)

dEτ
d lnw/r

θτdT (τ) + χs̄M ζ̄ + χ(1− s̄M)ε (13)

where χ ≡
∫
(ατ−α)2θτEτdT (τ)

α(1−α) , σ̄ ≡
∫
α(1−α)θτEτστdT (τ)∫
α(1−α)θτEτdT (τ) , s̄M ≡

∫
(ατ−α)(ατ−αM )θτ sMτ dT (τ)∫
(ατ−α)(ατ−αM )θτdT (τ)

, ζ̄ ≡∫
(ατ−α)(ατ−αM )θτ sMτ ζτdT (τ)∫
(ατ−α)(ατ−αM )θτ sMτ dT (τ)

, and αM ≡ d lnP/r
d lnw/r

.

The difference from (11) is an extra term that captures the change in aggregate factor

shares due to entry and exit; an increase in the wage induces labor-intensive plants to exit

and capital-intensive plants to enter.

3 Aggregation in the Baseline Model

The methodology developed in the previous section shows how to recover an aggregate

capital-labor elasticity from micro parameters and the distribution of plant expenditures. We

now use plant-level data on US manufacturing plants to estimate all of the micro components.

We then assemble these components to estimate the aggregate capital-labor elasticity of

substitution for the US manufacturing sector under the assumptions of our baseline model.

10In this section we assume that entry and overhead costs use final output. While the existing literature
provides little guidance on the factor content of entry and overhead costs, we study several alternative
assumptions theoretically and quantitatively in Web Appendix H.
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3.1 Data

Our main sources of micro data on manufacturing plants are the US Census of Manufactures

and Annual Survey of Manufactures (ASM). The Census of Manufactures is a census of all

manufacturing plants conducted every five years with more than 180,000 plants per year.11

The Annual Survey of Manufactures tracks about 50,000 plants over five year panel rotations

between Census years, and includes the largest plants with certainty.

We measure capital using perpetual inventory measures created by the Census. Capital

costs consist of the total stocks of structures and equipment capital multiplied by the ap-

propriate rental rate, using a Jorgensonian user cost of capital based upon an external real

rate of return of 3.5 percent as in Harper et al. (1989). In the ASM subsamples, we include

machinery rents as part of capital costs as well. For labor costs, both surveys contain total

salaries and wages at the plant level, but the ASM subsample includes data on supplemental

labor costs including benefits as well as payroll and other taxes. For details about data

construction, see Web Appendix B.

The Census of Manufactures, unlike the ASM subsample, only contains capital data

beginning in 1987. Further, industry definitions change from SIC to NAICS in 1997. We

thus take the following approach to estimating the aggregate elasticity.

We use the Census of Manufactures from 1987 through 2007 to estimate the micro elas-

ticities and examine their robustness. We then use the ASM in each year for the relevant

information on the composition of plants – the heterogeneity indices and materials shares –

to extend the analysis from 1972 to 2007. So, for example, to compute the aggregate elastic-

ity of substitution in 1977, we combine estimates of micro parameters from later Censuses

with information from the 1977 ASM. We define industries in our aggregation framework at

the two digit SIC or three digit NAICS level, and allow plant elasticities and heterogeneity

indices to vary by industry.

11We exclude small Administrative Record plants with fewer than five employees, for whom the Census
only tracks payroll and employment, in line with the rest of the literature using manufacturing Census data.
We also omit plants in Alaska and Hawaii because we do not have amenity instruments for Alaska and
Hawaii.
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(a) Across Industries (b) Over Time

Figure 1 Heterogeneity Indices

Note: The left figure displays the heterogeneity index, χn, in 1987 for each industry. The right
figure displays the average heterogeneity index over time.

3.2 Micro Heterogeneity

The heterogeneity index measures the extent of heterogeneity in capital intensities, and so

determines the relative importance of within-plant substitution and reallocation. Figure 1a

depicts these indices for each industry in 1987. Across industries, the indices average 0.1 and

are all less than 0.2. Similarly, Figure 1b shows how the average heterogeneity index evolves

over time. While heterogeneity indices are rising, they remain relatively small. Industry

capital shares exhibit even less variation; the cross-industry heterogeneity index χagg is

0.07.12,13

Given this level of heterogeneity, the plant-level elasticity of substitution between capital

and labor is the primary determinant of the aggregate elasticity. Therefore, we begin with

estimates of this elasticity.

12It may seem surprising that these heterogeneity indices are so small. Because capital shares are less
than one, their variance is smaller than their standard deviation. In Web Appendix D.1, we calibrate a
log-normal distribution for the capital cost to labor cost ratio and show that there would need to be much
more dispersion in capital shares than we see in the data in order to have values of χ substantially above
what we report in Figure 1a. For example, for χ to be 0.2, the 90-10 ratio for the capital cost to labor cost
ratio would have to be more than three times larger than observed.

13Although classical measurement error would lead us to overstate the heterogeneity indices, measurement
error due to imputation (White et al., 2018) would lead us to understate these indices. Note, however, that
the numerator of the heterogeneity index is a cost-weighted variance of capital shares, and measurement
error is likely less important for larger plants.
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3.3 Plant-Level Elasticity of Substitution

We obtain the plant-level elasticity of substitution from Raval (2019).14 We describe the

methodology and estimates from that paper in detail in order to explain how we map the

theory to the data.

Given cost minimization, the relationship between relative expenditures on capital and

labor rKni/wLni and relative factor prices w/r identifies the plant-level elasticity. We exploit

wage differences across local areas in the US in order to identify the micro elasticity of

substitution between capital and labor. Because these wage differences are persistent, with

a correlation between 1990 and 2000 of 0.93, they identify plants’ long-run response to a

permanent change in factor prices. Our measure of local areas is the commuting zone;

commuting zones are clusters of US counties designed to have high commuting ties within

cluster, so workers in the same commuting zone should face similar wages.

We run the regression:

log
rKnic

wLnic
= βn logwc + γnXnic + εnic

where wc is the wage for commuting zone c in which plant i in industry n is located. Under

our baseline model, βn = (σn − 1). The regression only uses plants in a single year; the

implicit assumption is that capital is mobile so all plants face the same cost of capital. Since

the local wage should reflect the cost of an efficiency unit of labor, local wages are estimated

controlling for observable measures of skill. To obtain the local wages, we first use data

from the Population Censuses and the American Community Surveys (ACS) to estimate a

residual wage for each person after controlling for education, experience, and demographics.

We then average this residual within each commuting zone.15 Xnic are additional controls;

all regressions control for 4 digit SIC or 6 digit NAICS industry fixed effects, as well as plant

age and multi-unit status.

This specification has several attractive properties. First, the dependent variable uses

a plant’s wage bill rather than a count of employees. If employees supply efficiency units

14Figure 2, Table I, and Table II were originally published in Raval (2019).
15For details about how we construct this wage, see Web Appendix B.3.
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of labor, using the wage bill automatically controls for differences in skill across plants.

Second, the local wage and plant wage bills are calculated using different data sources, so we

avoid division bias from measurement error in the wage in the dependent and independent

variables.16

Using all manufacturing plants, Raval (2019) estimates a plant level elasticity of substitu-

tion ranging from 0.3 to 0.5 across Census years. In addition, we allow the elasticity to vary

by industry through separate regressions in each industry. Figure 2 displays the estimates by

industry for 1987 along with 95 percent confidence intervals.17 Most of the estimates range

between 0.3 and 0.7.

Figure 2 Plant Elasticity of Substitution by Industry, 1987

Note: For each industry, this graph plots the plant level elasticity of substitution between capital
and labor as estimated in Raval (2019), together with the 95 percent confidence interval for each
estimate. Estimates based on wages derived from the Population Census, as described in the text.
Standard errors are clustered at the commuting zone level.

3.3.1 Instruments

We have used differences in wages across locations to estimate the plant-level elasticity of

substitution. Our variation therefore captures how average factor shares in a location vary

16An alternative approach would be to instrument for the plant-level wage using the local wage. We show
in Web Appendix C.7 that if regions differ in efficiency units of labor per worker in a way that is correlated
with the local wage, such an estimate would be biased. In general, we find lower estimates of the elasticity
when we instrument for the plant-level wage than in our baseline estimates.

17We list these estimates in Web Appendix C.
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with the local wage. This group-level design brings up an important endogeneity issue. If

local wages are correlated with local non-neutral productivity or unobserved skill differences,

then our estimate of the elasticity of substitution would be biased towards one as σ−1 would

be attenuated.18

To address such endogeneity problems, we examine three sets of instruments for the

labor supply facing manufacturing plants which we assume are independent of local area

confounding variables. First, we use a version of Bartik’s (1991) instrument for labor market

conditions, which is based on the premise that local areas differ in their industrial composi-

tion. When an industry expands nationwide, commuting zones more heavily exposed to that

industry experience larger increases in labor demand, raising local workers’ outside options.

Thus given each area’s initial industrial composition, we can construct the change in each

area’s labor demand due to the change in each industry’s nationwide employment. Because

we want an instrument for the supply of labor facing manufacturing plants, we construct the

instrument using non-manufacturing industries only.19

Second, we use two instruments for labor market conditions from Beaudry et al. (2012).

Like Bartik’s (1991) instrument, these instruments are based on a model in which local

industrial composition affects the labor supply facing manufacturing plants through workers’

outside options. While the local wage premium, defined as local shares of each industry

multiplied by each industry’s wage premium, is endogenous, Beaudry et al. (2012) develop

two instruments for it: the interaction of predicted changes in industry employment shares

with initial national industry wage premia, and the interaction of national changes in industry

wage premia with predicted contemporaneous industry employment shares.20

18Even though our identifying variation uses a group level design, our strategy estimates the average
response of plant-level factor shares, not the response of a location’s aggregate factor shares. The latter
incorporates changes in the scale of capital-intensive plants relative to labor-intensive plants, which are
not captured in these regressions. See Section 4.4 for a discussion of estimates from specifications using
aggregated data.

19Formally, the instrument is constructed as follows: Let gn(t) = 1
10 ln(Ln(t)/Ln(t− 10)) be the national

growth rate of industry n, and let ωj,n(t) be the share of area j’s employment working in industry n.
The instrument is the interaction between initial area employment shares and 10 year national employment
growth rates: Zj(t) =

∑
n∈NS ωj,n(t− 10)gn(t), where NS is the set of non-manufacturing four-digit SIC or

six-digit NAICS industries.
20Formally, let vn(t) be the national wage premium in industry n in time t, ωj,n(t) be the share of local area

j’s employment working in industry n, and ω̂j,n(t) be the predicted share of local area j’s employment working
in industry n. The predicted employment share ω̂j,n(t) is predicted based on national employment changes in
the same way as the Bartik instrument. The first instrument is then

∑
n∈NS vn(t)(ω̂j,n(t)−ωj,n(t−10)) and
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One issue with both the Bartik and BGS instruments is that they do not account for

input-output linkages; a shock that leads to growth in non-manufacturing industries could

affect local manufacturing plants that sell to or buy from them. We thus include a third

set of instruments that are not affected by this issue; measures of local amenities based on

climate and geography. Workers would accept a lower wage in locations with better amenities

(Rosen, 1979; Roback, 1982). Building on Albouy et al. (2016), we include measures of

the slope, elevation, relative humidity, average precipitation, average sunlight, average dew

point, the number of hot degree days and cold degree days, and temperature day bins for

each commuting zone.21

For the instruments for labor market conditions, we measure local wages using data

on average payroll to employment across all establishments in a commuting zone from the

Longitudinal Business Database (LBD). The Population Censuses are only conducted every

10 years in different years from the Economic Censuses, so the wages from the Population

Censuses do not match the year of the Economic Census. For most of our specifications, this

mismatch is not a problem because our wage variation is highly persistent. This mismatch

becomes a problem if we want to use short-run variation in wages. While the LBD-based

wages do not control for differences in individual worker characteristics, the instruments

should be orthogonal to the measurement error in wages. We examine whether this is the

case using the amenity instruments, and find that the estimates of the elasticity using the

LBD-based wages are only slightly higher than estimates using Population Census-based

wages.

Table I contains estimates of the elasticity of substitution using these instruments.22 The

first two columns report OLS estimates, based upon the Population Census-based wages in

the second instrument is
∑
n∈NS ω̂j,n(t)(vn(t)− vn(t− 10)), where NS is the set of non-manufacturing four-

digit SIC or six-digit NAICS industries. National industry wage premia are fixed effects from a regression
of establishment wages on industry dummy variables.

21The amenities in Albouy et al. (2016) were collected at the PUMA level; we aggregate them to the
commuting zone level by taking an average across PUMAs in the same commuting zone, weighting PUMAs
by their population in the commuting zone. We exclude amenities based on distance to the coast or lakes
as these may also affect import and export possibilities, and thus the productivity of the plant and the
competition it faces.

22Because industry definitions change over time, we often have to use slightly different years for the
instrument, or the 5 year instrument and its lag rather than the 10 year instrument. The exact time periods
underlying each instrument are detailed in Appendix B.
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the first column and LBD-based wages in the second column. On average, the elasticities

using LBD-based wages are about 0.13 higher than those based on Population Census-based

wages. Estimates using the Population Census-based wages are likely lower because they

control for differences in worker skills across areas, unlike the LBD-based wages.

Columns 3 and 4 estimate the elasticity instrumenting with the Bartik and BGS instru-

ments given LBD-based wages, while Columns 5 and 6 use the amenity instruments given

the Population Census-based and LBD-based wages, respectively. The last column uses all

three sets of instruments. Reassuringly, the estimates of the elasticity using instruments

range from 0.3 to 0.6, similar to the range of the OLS estimates. In addition, estimates of

the elasticity using amenity based instruments are similar to those with labor demand based

instruments, indicating that input-output linkage issues are not a major concern.

Table I IV Estimates of The Plant Capital-Labor Substitution Elasticity

Year OLS Bartik BGS Amenities All

1987 0.44 (0.04) 0.54 (0.03) 0.52 (0.04) 0.45 (0.09) 0.45 (0.07) 0.48 (0.06) 0.51 (0.04)
1992 0.47 (0.03) 0.52 (0.03) 0.45 (0.04) 0.48 (0.04) 0.57 (0.06) 0.55 (0.05) 0.50 (0.03)
1997 0.29 (0.05) 0.48 (0.04) 0.41 (0.11) 0.36 (0.08) 0.28 (0.09) 0.40 (0.07) 0.41 (0.05)
2002 0.31 (0.06) 0.48 (0.05) 0.31 (0.10) 0.37 (0.06) 0.33 (0.13) 0.42 (0.11) 0.42 (0.06)
2007 0.45 (0.04) 0.58 (0.03) 0.51 (0.05) 0.56 (0.05) 0.49 (0.09) 0.53 (0.07) 0.54 (0.04)

Wage Pop Census LBD LBD LBD Pop Census LBD LBD

Note: Standard errors are in parentheses and are clustered at the commuting zone level. All
regressions include industry dummies, age fixed effects, and a multiunit status indicator. Instruments
are as defined in the text. Wages used are the average log wage for the commuting zone. In the
first and fifth columns, the wage is computed as wage and salary income over total number of hours
worked adjusted for differences in worker characteristics using the Population Censuses; in all other
cases, the wage is computed as payroll/number of employees at the establishment level using the
LBD.

3.3.2 Other Threats to Identification

Our estimate of the micro elasticity of substitution would be biased if rental rates vary

systematically with local wages. Rental rates might vary with wages for three reasons.

First, the cost of some kinds of capital, such as structures, may reflect local wages. To

examine this, we estimate the elasticity of substitution between labor and equipment capital,

which is more plausibly mobile across locations.23 Second, the cost of capital could vary

23Because the Census only collects separate equipment and structures capital data for all manufacturing
plants before 1997, we only estimate this specification for 1987 and 1992.
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because of differences in lending rates from banks in different locations, or from differences

in firm creditworthiness or access to capital markets. To control for these differences, we add

firm fixed effects. Third, individual states could have different capital taxes or investment

subsidies; we control for these by including state fixed effects.

Table II compares our baseline approach to these alternative specifications. The first two

columns contain our baseline least squares estimates. The first column contains the average

plant-level elasticity when we estimate separate elasticities for each industry.24 The second

column estimates a common elasticity across all industries in manufacturing. Columns (3)-

(5) contain estimates for our robustness checks. The estimates including only equipment

capital or including state fixed effects are quite close to those from the baseline specification.

The estimates including firm fixed effects are somewhat higher, with elasticities between 0.55

and 0.65 and are about 0.21 higher on average compared to the baseline OLS estimates.25

One reason that the firm fixed effect estimates might overstate the true elasticity is that firm-

wide wage setting procedures might compress wage differences within firms, which would bias

the estimate toward 1.26

Another concern is that plant level capital stocks in the Census are measured with error.

We examine this concern in two ways; first, we use only plants in the ASM, as these plants

tend to have longer investment histories so that perpetual inventory measures of capital

are better measured. Second, we use a book value measure of capital as our capital stock

measure. We report these results in columns (6) and (7) of Table II; we find a slightly higher

elasticity on average using only ASM plants (about 0.08 higher compared to baseline), and

a slightly lower elasticity on average using book value of capital (0.05 lower compared to

24This average, along with other averages across industries, is a weighted average where the weight on

industry n is αn(1−αn)θn∑
n∈N αn(1−αn)θn as in Proposition 2.

25The sample of plants differ between columns (1)-(4) and column (5) because adding firm fixed effects
means that our we identify the elasticity using only plants in multi-plant firms. However, if we use the
sample of column (5) but omit firm fixed effects, we obtain estimates close to our baseline. It is thus the
inclusion of these fixed effects that leads to the difference.

26If firms are constrained to pay similar wages across plants in different locations, then our measured local
differences in wages would overstate the true differences in wages. This would attenuate our estimate of
1− σ, i.e., it would bias our estimate toward one. As an extreme example, if firms were constrained to pay
the same wage in every location, firms would face the same factor prices in every location, and we would
observe no response of factor shares to the local wage. We indeed show in Web Appendix C.7 that wage
differences across locations among plants within the same multi-plant firm are smaller than wage differences
among all plants across those locations. See Silva (forthcoming) for further evidence of fairness norms in
multi-plant firms and Hjort et al. (2020) for further evidence of firm-wide wage setting procedures.
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Table II Robustness Checks for Plant Capital-Labor Substitution Elasticity

(1) (2) (3) (4) (5) (6) (7)
Separate Single Equipment Book Value

OLS OLS Capital Firm FE State FE ASM Only Capital

1987 0.43 0.44 (0.04) 0.45 (0.03) 0.57 (0.07) 0.39 (0.04) 0.40 (0.08) 0.42 (0.04)
1992 0.48 0.47 (0.03) 0.47 (0.03) 0.65 (0.06) 0.31 (0.03) 0.67 (0.07) 0.39 (0.03)
1997 0.34 0.29 (0.05) 0.66 (0.06) 0.32 (0.05) 0.42 (0.09) 0.27 (0.05)
2002 0.34 0.31 (0.06) 0.59 (0.06) 0.41 (0.07) 0.52 (0.09) 0.22 (0.07)
2007 0.38 0.45 (0.04) 0.55 (0.07) 0.48 (0.05) 0.37 (0.07) 0.39 (0.04)

Note: The table contains seven specifications, all of which we estimate using OLS regressions.
In (1), we average separately-estimated plant elasticity of substitution for each industry using the
cross-industry weights. In (2), we estimate a single common elasticity of substitution for the entire
manufacturing sector. In (3), we only use equipment capital. In (4), we include firm fixed effects.
In (5), we include state fixed effects. In (6), we only use ASM plants and weight using the ASM
weights. In (7), we measure capital using book values.

All regressions include industry fixed effects, age fixed effects, and a multi-unit status indicator.
Wages used are the average log wage for the commuting zone, computed using the Population
Censuses as wage and salary income over total number of hours worked adjusted for differences in
worker characteristics. Standard errors, in parentheses, are clustered at the commuting zone level.

baseline).

In Web Appendix C.2 we relax the assumption that plants in each industry share the same

common, constant elasticity of capital-labor substitution. We use two methods to estimate

the weighted average of local elasticities of substitution, σ̄—using quantile regression and

using a transformation of the dependent variable—and find estimates in a narrow range

around our baseline estimates.

3.4 Aggregation

We now estimate the remaining plant-level production and demand parameters and use our

baseline framework to aggregate to the manufacturing-level elasticity of substitution. The

reallocation effect depends upon both the plant elasticity of substitution between materials

and non-materials inputs, ζ, and the elasticity of demand, ε.

To identify ζ, we use the same cross-area variation in the wage. Across commuting zones,

the local wage varies but the prices of capital and materials are fixed. Cost minimization

implies that ζ measures the response of relative expenditures of materials and non-materials

costs to changes in their respective prices: 1− ζ = d ln[(rKni+wLni)/qMni]
d ln(λni/q)

, where λni is the cost

index of i’s capital-labor bundle. Holding fixed the prices of materials and capital, a change
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in the local wage would increase these relative prices by d lnλni/q = (1 − αni)d lnw. To a

first-order approximation, the response of (rKni + wLni)/qMni to the local wage would be

(1− ζ)(1− αni). We therefore estimate ζ using the regression:

log
rKnic + wLnic

qMnic

= (1− ζ)(1− αnic)(logwc) + γnXnic + εnic.

Table III contains these estimates. Because we use the full Census for each estimate, our

estimate of ζ is common across industries. The first column contains our baseline estimates.

These estimates range between 0.6 and 1 across years.27

Table III Plant-Level Elasticities of Substitution between Materials and Non-Materials for
the Manufacturing Sector

1987 1.03 (0.12)
1992 0.83 (0.10)
1997 0.69 (0.07)
2002 0.78 (0.08)
2007 0.57 (0.06)

Note: Standard errors are in parentheses. All regressions include industry fixed effects, age fixed
effects and a multi-unit status indicator, and have standard errors clustered at the commuting zone
level.

Within industries, the demand elasticity tells us how much consumers substitute across

plants when relative prices change. We estimate the elasticity of demand using the impli-

cations of profit maximization; optimal price setting behavior implies that the markup over

marginal cost is equal to ε
ε−1 . Thus, we invert the average markup across plants in an indus-

try to obtain the elasticity of demand. The assumption of constant returns to scale implies

that each plant’s markup is equal to its ratio of revenue to cost. Figure 3 displays the elas-

ticities of demand for each manufacturing industry in 1987.28 Across industries, elasticities

27This estimation strategy implicitly assumes a national market for materials. We have run additional
specifications for 1987 and 1992 that adjust the regression to account for the fact that some materials are
sourced locally; an increase in the local wage would raise the cost of such locally sourced materials. These
estimates are only 0.02 to 0.03 than our baseline estimates of the materials-non materials elasticity. See Web
Appendix D.4 for details. Atalay (2017) pursued a complementary approach using differences in materials
prices across plants in the US Census of Manufactures and finds an estimate of 0.65, within the range of
Table III. See Appendix F of his paper. This differs from his main estimate of this elasticity which uses
shorter-run industry-level variation and includes non-manufacturing industries, and so may not reflect the
long-run, plant-level elasticity for manufacturing required for our model.

28We list these estimates in Web Appendix D.2. In addition, in Web Appendix D.3 we examine alternative
approaches to estimate the demand elasticity. We also show that our baseline strategy is robust to assuming
diminishing returns to scale, and that less than 100% pass through will mute the scale response.
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of demand vary between three and seven in 1987.

The overall scale elasticity is s̄Mn ζ + (1 − s̄Mn )εn. s̄Mn is an average of materials shares,

which are high in manufacturing; the average across industries in 1987 is 0.52. Figure 3

contains our estimates of the scale elasticities; they average 2.9 across industries in 1987.

Figure 3 Elasticity of Demand and Scale Elasticity by Industry, 1987

Note: For each industry, this graph plots both the elasticity of demand, estimated from revenue-
cost ratios, and the scale elasticity s̄Mn ζ + (1− s̄Mn )εn.

To aggregate across industries, we need one more elasticity, the cross industry elasticity of

demand η. We estimate this elasticity using industry-level panel data by regressing quantity

on price, using average cost as an instrument for supply. Web Appendix D.5 contains the

details of this analysis. Across specifications, we find estimates centered around one. We

thus set η to one. As we would expect, the cross-industry demand elasticity η is much

lower than the plant-level demand elasticities; varieties in the same industries are better

substitutes than varieties in other industries.

We can now combine the substitution and reallocation effects to estimate the industry

and manufacturing sector level elasticities of substitution. In Figure 4a, we depict the plant-

level and industry-level elasticities of substitution. Because the heterogeneity indices tend to

be small, the industry-level elasticities of substitution are only moderately higher than the

plant-level elasticities. The average industry elasticity is 0.68 and the overall manufacturing

level elasticity of substitution is 0.72 in 1987. Within-plant substitution accounts for 68
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(a) Plant and Industry Elasticities (b) Manufacturing Sector Elasticity Across Time

Figure 4 Elasticities of Substitution and Aggregation

Note: The left figure displays the plant level elasticity and industry level elasticity of substitution
for each industry. The right figure displays the manufacturing level elasticity of substitution for each
Census year from 1972-2007.

percent of industry substitution and 58 percent of overall substitution for manufacturing.29

Our methodology allows us to examine how much changes in the composition of plants

caused the aggregate elasticity of substitution to vary over time as the manufacturing sector

has evolved.30 Figure 4b depicts the aggregate elasticity of substitution from 1972 to 2007.

We estimate this elasticity in two ways. First, we freeze all elasticities at their values in

1997, the year for which we can estimate elasticities using both SIC and NAICS industry

definitions, but let all of the sufficient statistics vary over time. In that case, the red solid

line in Figure 4b, the aggregate elasticity has fallen slightly from 0.60 to 0.54 from 1972 to

2007. Alternatively, between 1987 and 2007 we can allow all elasticities to vary by year. The

resulting time path of aggregate elasticities, the blue dashed line, reveals a larger fall in the

elasticity, from 0.72 to 0.54, over time, although the time path for 1997 and after is virtually

identical to the previous case.

This decline primarily reflects two changes. First, the average demand elasticity falls

from 5.0 in 1987 to 3.3 in 2007, which explains approximately half of the decline. Second,

the average plant elasticity falls substantially between 1992 and 1997, from 0.48 in 1992 to

29While our estimate is not directly comparable to estimates of aggregate elasticities for the entire private
sector, we speculate about the implications for such an elasticity in Web Appendix E.2. In Web Appendix E.3
and Web Appendix E.4 we discuss the differences between our methodology and one that estimates an
aggregate elasticity using aggregate time series as well as the methodology of Karabarbounis and Neiman
(2014).

30After 1997, industry definitions switch from two digit SIC basis to three digit NAICS basis; we estimate
plant elasticities using SIC industries for 1987 and 1992 and NAICS industries for 1997, 2002, and 2007.
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0.34 in 1997.

4 Additional Margins of Adjustment

We now enrich our theoretical model to incorporate several additional margins of adjustment.

First, a factor price change may induce some plants to exit and other plants to enter. Here,

the degree of adjustment will vary across plants: the contribution of a plant on the margin of

entering or exiting is different from that of a plant that is inframarginal. Second, adjustment

costs may mean that plants’ factor usage does not reflect static cost minimization. Third,

factor price changes may induce the creation of intermediates that complement particular

technologies, shifting the technological frontier. Finally, we examine other considerations

such as substitution to intangible capital. For each channel, we discuss how our estimates

would change.

4.1 Entry and Exit

The last section provided an estimate of the aggregate elasticity of capital-labor substitution

for the manufacturing sector using a model with a fixed set of firms. We now interpret the

evidence using a model that incorporates entry and exit that was introduced in Section 2.3.

The expression for the aggregate elasticity (13) can be rearranged as

σagg = (1− χ)

[
σ +

∫
(ατ − α) dEτ

d lnw/r
θτdT (τ)∫

ατ (1− ατ )θτdT (τ)

]
+ χs̄Mζ + χ(1− s̄M)ε (14)

The term in brackets captures the response of plants’ capital shares to an increase in the

cost of labor relative to capital coming from the intensive and extensive margins: within-

plant substitution, and a contribution from the entry of capital intensive plants and exit of

labor intensive plants. The second term captures changes in scale coming from substitution

between materials and primary inputs, while the third term comes from changes in scale

coming from changes in revenue.

In this section, we use this formula to bound the true elasticity. We show that the upper

bound is quite close to our baseline estimate, and derive a lower bound using dynamic panel
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estimates of within-plant substitution. The implied range for the aggregate capital-labor

elasticity for the manufacturing sector averages [0.35, 0.65] across years.31

Upper Bound

Our baseline estimate of the aggregate elasticity of substitution is an upper bound on

the true aggregate elasticity for three reasons. First, our cross-sectional estimates of the

micro elasticity of substitution incorporate both within-plant substitution and changes due

to entry and exit, i.e. the entire term in brackets in (14). At root, our cross-sectional

estimates capture how the average capital share varies with the local wage, and changes in

this average reflect both the intensive and extensive margins. In Web Appendix H we provide

an explicit characterization and describe how selection causes an upward bias if marginal

firms tend to be more labor intensive than average.

Second, the estimated micro elasticity of substitution between intermediate and primary

inputs, ζ̂, reported in Table III, is larger than ζ̄. ζ̄ captures only the intensive margin—

substitution within plants—while ζ̂ uses cross-sectional variation and incorporates both the

intensive and extensive margins.

Third, our baseline strategy overstates how a plant’s scale responds to a change in its

marginal cost because part of this cost—the overhead cost—is fixed. Formally, we had esti-

mated this response from plants’ revenue to cost ratio, which we interpreted in our model as

the markup, ε
ε−1 . Here, cost includes both variable cost and fixed overhead cost, so the ratio

of revenue to cost for a plant that operates technology τ is ε̂τ
ε̂τ−1 =

ε
ε−1

Variable Costs

Variable Costs+Overhead Costs
≤

ε
ε−1 , or ε̂ ≥ ε.

Thus, our cross-sectional estimates provide an upper bound for the true aggregate elas-

ticity for the US manufacturing sector that averages 0.65 across years.32

31While we have assumed that entry and overhead costs both use final output, we explore alternative
assumptions about their factor content in Web Appendix H. We show that if plants’ overhead costs have
the same factor content as their variable costs, or if the overhead cost used labor, the upper bound remains
valid and the lower bound is slightly lower. We also examine the case in which both entry costs and overhead
costs require the entrepreneur’s labor, but these costs—the opportunity cost of the entrepreneur’s time—do
not appear on the plant’s wage bill. In such a world, one can differentiate between an aggregate elasticity
of substitution that captures how measured factor shares respond to changes in factor prices and one that
captures how underlying resource usage (which incorporates unmeasured labor) responds. In practice, the
two elasticities are fairly close. We show that the former corresponds to our baseline estimate, while the
latter is about 0.1 higher than our baseline estimate.

32To derive the upper bound, we compute the aggregate elasticity in each year using our baseline formula
but using the estimated cross-sectional elasticity from column (4) of Table C.2. This uses an estimate of the

24



Lower Bound

We next characterize a lower bound. The changes in plants’ capital and labor usage can

be divided into two parts, the intensive and extensive margins, i.e., the two terms in brackets

in (14). The extensive margin must be non-negative. To quantify the intensive margin, we

now exploit the panel structure of our data to examine how individual plants respond to

changes in factor prices. Because this adjustment may be slow, the long-run response to

a factor price change should be larger than the short-run adjustment. We estimate the

following econometric model for plant i and time period t:

log
Kitc

Litc
= ρ5 log

Kit−5c

Lit−5c
+ ρ10 log

Kit−10c

Lit−10c
+ β log(wtc/rt) + ηi + δt + γn(i)t+ εitc (15)

where ηi is a plant fixed effect, ρ5 and ρ10 measure the degree of persistence in the capital-

labor ratio through two lags, and β measures the short-run elasticity of substitution. We

estimate this relationship in terms of the capital-labor ratio, and not the capital cost - labor

cost ratio, so the long run capital-labor elasticity is β
1−ρ5−ρ10 .33 Because we examine plants

over time, we decompose the bias of plant i’s technology into a plant fixed effect, ηi, a time

fixed effect, δt, an 3-digit industry specific trend, γn(i)t, and a residual εitc.

We then use the Blundell-Bond model to estimate this relationship instrumenting for the

wage-rental ratio using all of the instruments used earlier.34 The estimate of the short run

elasticity using the unbalanced panel is 0.21 with a standard error of 0.09. The implied long

run elasticity is then 0.34, substantially lower than our cross-sectional estimates.35 Our long-

run intensive margin estimates are similar to those found in the literature using alternative

methods.36

σ̄ derived from regressing αi, which we show is the appropriate theoretical object in this context, rather than
ln αi

1−αi , on the log of the local wage. In practice, the estimates of σ̄ using each approach are very similar.
33We measure the labor input at a plant as the wage bill divided by the local wage.
34Local amenities instrument for the local wage level, while the Bartik and BGS shocks instrument for

both wage levels and changes. Wages are based on establishment data in order to match the same year as
the Economic Census.

35In Web Appendix C.5, we examine several additional specifications and find qualitatively similar con-
clusions.

36An alternative strategy to estimate the micro elasticity is to use variation in the user cost of capital
over time stemming from changes in tax-laws or the price of capital that differentially affect asset types;
see Chirinko (2008) for a survey of this literature. Chirinko et al. (2011) and Barnes et al. (2008) provided
estimates that are the conceptually closest to ours, as they used long-run movements in the user cost of
capital to identify the long-run micro elasticity for US and UK public firms respectively. Their approach
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These, together with the conservative restrictions that ε > 1 and ζ > 0, deliver a lower

bound for the aggregate elasticity which averages 0.35 across years.

4.2 Adjustment Frictions and Distortions

In Web Appendix I, we study models in which heterogeneity in cost shares of capital are due

to adjustment costs or misallocation frictions. In these models, the only difference with our

baseline is the scale response; since factor usage does not reflect static cost minimization,

we can no longer use Shephard’s Lemma to characterize the response of scale.37 If all

heterogeneity is due to “exogenous wedges” (Hsieh and Klenow, 2009), our baseline elasticity

recovers the true elasticity to a first order. With capital adjustment frictions, our baseline

elasticity would slightly overestimate the actual elasticity. Finally, with plant-specific input

prices, our baseline elasticity recovers the response of factor shares to uniform changes in

factor prices.

4.3 Shifts in the Technological Frontier

Shifts in factor prices may induce changes in the technological frontier, as outlined by Ace-

moglu (2002), Acemoglu (2003), and Acemoglu (2010). Holding the technological frontier

fixed, an increase in the wage would change the economy’s capital-labor ratio. This would

change the size of the market for innovations that complement each factor, and the sub-

sequent adjustment of the technological frontier could amplify or dampen the initial wage

increase. We articulate an explicit model of directed technical change in Web Appendix J.1.

In that context, we can distinguish between the short-run aggregate elasticity which holds the

technological frontier fixed and the long-run elasticity which includes shifts in the frontier.

If the innovations that complement each factor are available nationwide, then our baseline

estimate corresponds to the short-run elasticity because they are based on cross-sectional

differences at a point in time. We show that if the short-run aggregate elasticity is less than

estimates the elasticity using the capital first order condition and allows for biased technical change at the
industry level. Each estimated a micro elasticity of substitution of 0.4.

37One can identify each plant with a production function and a history of shocks. The micro elasticities of
substitution in both our baseline formula and our empirical estimates correspond to how each such plant’s
factor usage would be different if factor prices were permanently different.
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one, then the long-run elasticity is between the short-run value and one; the induced shift in

the technological frontier dampens but does not reverse the sign of the initial shift in factor

shares.

4.4 Other Considerations

In addition, in Web Appendix E.2, we estimate industry-level elasticities of substitution by

aggregating the micro data to the industry level in each location. With 4-digit SIC / 6-digit

NAICS industries, the estimates are relatively close to the implied industry-level elasticities

that we built up from individual plants. When we use broader industry definitions, the

estimates are much less consistent across specifications, likely due to differences in composi-

tion across locations. In Web Appendix J.2, we study an economy in which each plant uses

intangible capital as well as physical capital in production and find negligible changes to our

estimates, as the compensation of intangible capital accrues to the factors that produce it.38

In Web Appendix J.4, we examine several reasons why the response of plants’ capital-

labor ratios to local factor prices might differ from the response to a national change. Our

identification strategy relied on measuring the response to local factor prices, but an aggre-

gate elasticity captures the response to national factor prices. One plausible reason for such

differences is endogenous location choice, which would lead to an upward bias in our baseline

estimate of the aggregate elasticity. Another is national shifts in the technological frontier,

which would imply a downward bias, but that the true elasticity is less than one. While it

is difficult to say anything definitive, one way to gauge the importance of these mechanisms

is to ask how factor shares in a location respond to the wage in nearby locations. We do not

find a large response to the wage in nearby locations after controlling for the wage in the

plant’s own location.

38We show that our strategy is robust to modeling intangible capital as increasing productivity or demand.

27



5 The Decline of the Labor Share

Figure 5 depicts the labor share of income in the US for the manufacturing sector and for the

aggregate economy in the post-war period.39 The labor share for manufacturing has fallen

since 1970, from about 0.73 to 0.55 in 2011. The steepest decline has been since 2000; the

labor share fell from roughly 0.65 to 0.55 in one decade. The labor share has fallen for the

overall economy as well, though not by as much, falling from 0.70 in 1970 to 0.62 in 2011.

In this section, we will examine the decline in the labor share for manufacturing.

Figure 5 Labor Share over Time

Note: The solid line is the labor share for manufacturing based on data from the BLS Multifactor
Productivity series. The dashed line is the labor share for the overall economy from Fernald (2012).

Along a balanced growth path in the neoclassical growth model, labor-augmenting tech-

nical change and the induced rise in wages exactly offset to keep factor shares constant. The

labor share has recently been falling, which means that the race has not been even.

Some mechanisms that have recently been proposed to explain the decline in the labor

share—such as an acceleration in investment specific technical change as in Karabarbounis

and Neiman (2014) or increased capital accumulation as in Piketty (2014)—would affect

39As Gomme and Rupert (2004), Krueger (1999), and Elsby et al. (2013) point out, the major issue with
calculating the labor share is whether proprietors’ income accrues to labor or capital. Both series assume that
the share of labor for proprietors is the same as for corporations. For the manufacturing sector, proprietors’
income represented 1.4 percent of income on average since 1970.
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relative factor supply but not the bias of technical change. When we use the term “bias

of technical change,” we mean any change in the economy that would alter relative fac-

tor demand. Other mechanisms, such as changes in preferences, markups, demographics,

technology, or trade barriers, would also alter the implied bias of technical change.

To examine the role of these two classes of mechanisms, we decompose the change in

the labor share into a contribution from factor prices and a contribution from the bias of

technical change. Given that we estimate the elasticity of substitution is less than unity

and wages have risen relative to rental rates of capital, factor price changes have raised the

labor share holding technology fixed. However, this was true both when the labor share was

relatively stable in the middle part of the twentieth century and also when the labor share

declined more recently. To draw conclusions about which class of mechanisms caused the

decline in the labor share, it is important to examine the changes in the behavior of each

component over time.

One advantage of our strategy for estimating the aggregate capital-labor elasticity of

substitution is that, unlike most other work, it does not impose restrictions on the behavior

of the bias of technical change over time. For example, most time series estimates of the

aggregate elasticity impose that the bias of aggregate technical change follows a linear trend.

Because we impose no such restrictions, our approach is well-suited to studying changes in

the trend of the bias of technical change.

Formally, let sv,L denote labor’s share of value added. Then the change in the labor share

can be decomposed into two terms

dsv,L =
∂sv,L

∂ lnw/r
d lnw/r︸ ︷︷ ︸

contr. from factor prices

+

(
dsv,L − ∂sv,L

∂ lnw/r
d lnw/r

)
︸ ︷︷ ︸

contr. from bias

(16)

The first measures the contribution of changes in factor prices. The second measures a

residual that we label the “bias of technical change”. In executing this decomposition, we

use the long-run manufacturing-level elasticity of substitution, and compute the long-run

contribution from factor price changes.

To execute this decomposition, we need measures of factor prices and expenditures. We
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base our rental prices on NIPA deflators for equipment and structures, and wages on aver-

age compensation per hour worked adjusted for changes in worker quality over time. Our

measures of value added and input expenditures are based on NIPA data. Our estimates of

expenditures on fixed capital combine NIPA data on equipment and structures capital with

our rental prices.40

The black line in Figure 6 displays the cumulative contribution of the bias of technical

change to the decline in the labor share. Using our baseline aggregate elasticity, the biased

residual contributes to a decline of 20 percentage points from 1970 to 2010. The contribution

of the bias accelerates starting in 2000; about half of the cumulative contribution of the bias

is from the 2000-2010 period.41

We then demonstrate that the value of the aggregate elasticity is crucial to measure the

magnitude of the bias of technical change by doing the same decomposition using alternative

values for the aggregate elasticity. First, if we used the value of plant-level elasticity as the

aggregate elasticity, the cumulative contribution of the bias would be two percentage points

higher than our baseline. Second, with a much higher aggregate elasticity of 2, the bias of

technical change does not contribute to the labor share decline prior to 2000, and the overall

cumulative contribution is much smaller at 7 percentage points. For all three values of the

elasticity, the bias of technical change accelerates after 2000.

An interesting feature is that the break in trend is much less drastic with our baseline

elasticity than with an aggregate elasticity of 2. A more steady contribution of biased techni-

cal change is consistent with, among other factors, slow, continuous adoption of automation

technologies (Acemoglu and Restrepo, 2018).

We then examine the contribution of changes in factor prices to the labor share. Using

our baseline aggregate elasticity, the contribution of changes in factor prices has been rela-

40See Web Appendix F for details of construction of the factor price series, the details of this calculation,
and decompositions that use alternative rental price series, alternative assumptions about the interest rate
faced by firms, and factor shares from production data rather than NIPA.

41In this decomposition, we decompose total income into payments to labor, payments to fixed capital,
and a residual that we label “profit”. The bias incorporates contributions from changes in labor’s share of
cost as well from changes in the profit share. Both accelerate after 2000, although the change in the annual
contribution from the profit share is more stark. In Web Appendix F.2 we pursue an alternative approach
put forward by Karabarbounis and Neiman (2019) which assumes that this profit share reflects unmeasured
payments to capital. In that case, the cumulative contribution of the bias rises by 3 percentage points.
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Figure 6 Cumulative Contribution of the Bias of Technical Change to the Decline in the
Labor Share

Note: All changes are in percentage points. Each contribution to the labor share change has been
smoothed using a Hodrick-Prescott filter. The contributions are based on different values for the
aggregate elasticity of substitution, and are as defined in the text.

tively constant over the past 40 years, raising the labor share by 0.10 percentage points per

year in the 1970-1999 period and 0.08 percentage points per year in the 2000-2010 period.

This means that explanations that work purely through factor supplies would have trouble

matching the timing of the decline in the labor share.42

Finally, while real wage growth has indeed slowed after 1970 compared to the immediate

post-war period, we argue that this slowdown accounts for only a small share of the decline

in the labor share. From 1970-2011, annual growth in real wages in the manufacturing

sector was 1.9 percentage points lower than 1954-1969. We use our estimated elasticities to

assess how much of the decline in the labor share can be explained by the slowdown in wage

growth.43 We find that if wages grew faster, the manufacturing labor share in 2010 would be

0.59, compared to its actual value of 0.55. Thus, the slowdown in wages can explain about

42In an environment with directed technical change, a change in relative factor supply might induce a
change in the bias of technology. Nevertheless, as discussed in Section 4.3, the long-run aggregate elasticity
incorporating directed technical change is between our estimated elasticity and unity, muting the effect on
factor shares. Thus incorporating directed technical change would not alter our conclusion that explanations
stemming from changes in relative factor supply would have trouble matching the decline in the labor share.

43This counterfactual involves extrapolating our local estimate of the aggregate elasticity of substitution.
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20 percent of the total decline.

6 Conclusion

This paper has developed a new approach to estimate the aggregate elasticity of substitution

between capital and labor by building up from micro structural parameters and the cross-

sectional distribution of plant-level expenditures. Our approach has several advantages.

First, when we estimate micro-level parameters, we can use variation in the supply of factors

that is plausibly independent of technological differences, which is difficult to do at the

aggregate level. We can also estimate changes in the aggregate elasticity and the bias of

technology over time. In addition, with cross-sectional micro data, there are many ways to

examine the robustness of our model and identification strategy.

We then applied our methodology to data on plants in the US manufacturing sector.

While the average plant-level elasticity lies roughly between 0.3 and 0.5, our estimates indi-

cated that the aggregate elasticity of substitution between capital and labor for the manu-

facturing sector has been between 0.5 and 0.7, with a slight decline from 1972 to 2007. While

we have applied our methodology to capital-labor substitution, one could posit a richer pro-

duction structure and estimate elasticities between varieties of labor and capital. We believe

this would be a fruitful way to gain insight into the evolution of skill premia and inequality.
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Appendix

A Proofs of Propositions

We first derive an expression for the industry-level elasticity of substitution. In Section 2, we
assumed that plants’ production functions took a nested CES functional form. Here we relax this
functional form assumption. While we maintain that each plant’s production function has constant
returns to scale, we impose no further structure.

Assumption 1′ Plant i in industry n uses the constant returns to scale production function
Fni(Kni, Lni,Mni).

The purpose of this is twofold. First, it provides a generalization of the formulas in Proposition 1
that we will use later in Section C.2. Second, we will later use the formulas here to aggregate across
industries and derive an expression for the aggregate elasticity of substitution between capital and
labor for the manufacturing sector as a whole.

For plant i, we define the local elasticities σni and ζni to satisfy

σni − 1 =
d ln rKni/wLni

d lnw/r
(A.1)

ζni − 1 =
1

αM − αni
d ln qMni

rKni+wLni

d lnw/r
(A.2)

If i’s production function takes a nested CES form as in Assumption 1, σni and ζni would equal
σn and ζn respectively.44 Under Assumption 1′, they are defined locally in terms of derivatives of
Fni evaluated at i’s cost-minimizing input bundle. Exact expressions for σni and ζni are given in
Web Appendix G.1. Proposition 1′ characterizes the industry elasticity of substitution σNn . The
resulting expression is identical to Proposition 1 except the plant elasticities of substitution are
replaced with weighted averages of the plants’ local elasticities, σ̄n and ζ̄n.

Proposition 1′ Under Assumption 1′, the industry elasticity of substitution σNn = d lnKn/Ln
d lnw/r is:

σNn = (1− χn)σ̄n + χn
[
(1− s̄Mn )εn + s̄Mn ζ̄n

]
(A.3)

where χn ≡
∑

i∈In
(αni−αn)2θni
αn(1−αn) and s̄Mn ≡

∑
i∈In

(αni−αn)(αni−αM )θni∑
j∈In (αnj−αn)(αnj−α

M )θnj
sMni as in Proposition 1

and

σ̄n ≡
∑
i∈In

αni(1− αni)θni∑
j∈In αnj(1− αnj)θnj

σni

ζ̄n ≡
∑
i∈In

(αni − αn)(αni − αM )θnis
M
ni∑

j∈In(αnj − αn)(αnj − αM )θnjsMnj
ζni

44The definition of σni is straightforward but ζni requires some elaboration. Suppose that Fni takes the

nested CES form of Assumption 1. Let λni ≡
[
(r/Ani)

1−σn + (w/Bni)
1−σn

] 1
σn−1 be the marginal cost of i’s

capital-labor bundle. Then cost minimization implies qMni

rKni+wLni
=
(
q/Cni
λni

)1−ζn
. Since d ln q/r

d lnw/r = 1 − αM

and, from Shephard’s Lemma, d lnλni/r
d lnw/r = 1− αni, we have that

d ln
qMni

rKni+wLni

d lnw/r = (ζn − 1)(αM − αni).
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Proof. As discussed in the text, the definitions of σni and σNn imply

σni − 1 =
d ln rKni

wLni

d lnw/r
=

1

αni(1− αni)
dαni

d lnw/r
, ∀i ∈ In

σNn − 1 =
d ln rKn

wLn

d lnw/r
=

1

αn(1− αn)

dαn
d lnw/r

Since αn =
∑

i∈In αniθni, we can differentiate to get

σNn − 1 =
1

αn(1− αn)

[∑
i∈In

dαni
d lnw/r

θni +
∑
i∈In

αni
dθni

d lnw/r

]

=

∑
i∈In αni(1− αni)θni(σni − 1)

αn(1− αn)
+

∑
i∈In αni

dθni
d lnw/r

αn(1− αn)

Using the definition of σ̄n and
∑

i∈In
dθni

d lnw/r = 0, we have

σNn − 1 = (σ̄n − 1)
∑
i∈In

αni(1− αni)θni
αn(1− αn)

+

∑
i∈In(αni − αn) dθni

d lnw/r

αn(1− αn)
(A.4)

Since χn =
∑

i∈In
(αni−αn)2θni
αn(1−αn) , one can verify that

∑
i∈In

αni(1−αni)θni
αn(1−αn) = 1− χn, which gives

σNn = (1− χn)σ̄n +

∑
i∈In(αni − αn) dθni

d lnw/r

αn(1− αn)
+ χn (A.5)

We now find an expression for d ln θni
d lnw/r . θni can be written as

θni =
rKni + wLni∑

j∈In rKnj + wLnj
=

(1− sMni )zni∑
j∈In(1− sMnj)znj

=
(1− sMni )zni
(1− sMn )zn

where zni ≡ rKni + wLni + qMni and zn ≡ rKn + wLn + qMn. Since d ln
1−sMni
sMni

= 1
sMni

d ln(1− sMni ),
the definition of ζn implies

d ln(1− sMni )
d lnw/r

= sMni (ζn − 1)(αni − αM )

The change in i’s expenditure on all inputs depends on its expenditure shares:

zni
zn

=
rKni + wLni + qMni∑

j∈In rKnj + wLnj + qMnj
=

εn−1
εn

PniYni∑
j∈In

εn−1
εn

PnjYnj
=

εn−1
εn

P 1−εn
ni YnP

εn
n∑

j∈In
εn−1
εn

P 1−εn
nj YnP

εn
n

=

(
Pni
Pn

)1−εn

The change in i’s price depends on the change in its marginal cost

d lnPni/r

d lnw/r
=

d ln εn
εn−1mcni

d lnw/r
=

d lnmcni
d lnw/r

= (1− sMni )(1− αni) + sMni (1− αM ) (A.6)
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Putting these pieces together, we have θni =
1−sMni
1−sMn

(
Pni
Pn

)1−εn
, so differentiating and using

∑
i∈In(αni−

αn)θni = 0 yields

∑
i∈In

(αni − αn)θni
d ln θni
d lnw/r

=
∑
i∈In

(αni − αn)θni

[
d ln 1− sMni

d lnw/r
+ (1− εn)

d lnPni/r

d lnw/r

]

=
∑
i∈In

(αni − αn)θni

{
sMni (ζni − 1)(αni − αM )

+(1− εn)
[
(1− sMni )(1− αni) + sMni (1− αM )

] }
=

∑
i∈In

(αni − αn)θni
{
sMni (ζni − εn)(αni − αM ) + (1− εn)(1− αni)

}
Using the definitions of ζ̄n, s̄Mn , and χn, this becomes∑
i∈In

(αni − αn)θni
d ln θni
d lnw/r

=
∑
i∈In

(αni − αn)θni
[
sMni (ζ̄n − εn)(αni − αM ) + (1− εn)(1− αni)

]
=

∑
i∈In

(αni − αn)θni
[
s̄Mn (ζ̄n − εn)(αni − αM ) + (1− εn)(1− αni)

]
=

∑
i∈In

(αni − αn)θni
[
s̄Mn (ζ̄n − εn)(αni − αn) + (1− εn)(αn − αni)

]
= αn(1− αn)χn

[
(ζ̄n − εn)s̄Mn − (1− εn)

]
Finally, we can plug this back into (A.5) to get

σNn = (1− χn)σ̄n + χn
[
s̄Mn ζn + (1− s̄Mn )εn

]
To build up to the aggregate elasticity of substitution between capital and labor, we proceed in

exactly the same way as with the industry-level elasticity. Define ζNn to satisfy (ζNn −1)(αn−αM ) =

d ln
1−sMn
sMn

d lnw/r . The claim below will give an expression for ζNn in terms of plant level elasticities and
choices.

Proposition 2′ Under Assumption 1′, the aggregate elasticity between capital and labor is

σagg = (1− χagg)σ̄N + χagg
[
s̄M ζ̄N + (1− s̄M )η

]
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where χagg, σ̄N , ζ̄N , s̄M , and ζNn are defined as

χagg =
∑
n∈N

(αn − α)2θn
α(1− α)

σ̄N =
∑
n∈N

αn(1− αn)θn∑
n′∈N αn′(1− αn′)θn′

σNn

ζ̄N ≡
∑

n∈N (αn − α)(αn − αM )θns
M
n ζ

N
n∑

n∈N (αn − α)(αn − αM )θnsMn

s̄M =

∑
n∈N (αn − α)(αn − αM )θns

M
n∑

n∈N (αn − α)(αn − αM )θn

ζNn =
∑
i∈In

θni

[
ζni

sMni (αni − αM )

sMn (αn − αM )
+ εn

{
1− sMni (αni − αM )

sMn (αn − αM )

}]

Proof. Note that since zni
zn

= PniYni
PnYn

, we have both d lnYn
d lnw/r =

∑
i∈In

zni
zn

d lnYni
d lnw/r and d lnPn/r

d lnw/r =∑
i∈In

zni
zn

d lnPni/r
d lnw/r . With the first, we can derive an expression for the change in cost that parallels

the within-industry expression:

d ln zn/r

d lnw/r
=

∑
i∈In

zni
zn

d ln zni/r

d lnw/r

=
∑
i∈In

zni
zn

d ln εn−1
εn

YniPni/r

d lnw/r

=
∑
i∈In

zni
zn

[
d lnYni
d lnw/r

+ (1− sMni )(1− αni) + sMni (1− αM )

]
=

d lnYn
d lnw/r

+ (1− sMn )(1− αn) + sMn (1− αM )

With the second, we can derive an expression for the change in the price level that parallels (A.6)

d lnPn/r

d lnw/r
=

∑
i∈In

zni
zn

d lnPni/r

d lnw/r

=
∑
i∈In

zni
zn

[
(1− αni)(1− sMni ) + sMni (1− αM )

]
= (1− αn)(1− sMn ) + sMn (1− αM )

Thus following the exact logic of Proposition 1′, we have that

σagg = (1− χN )σ̄N + χN
[
s̄M ζ̄N + (1− s̄M )η

]
It remains only to derive the expression for ζNn . Begin with 1− sMn =

∑
i∈In(1− sMni )

zni
zn

. Differen-
tiating each side gives:

d ln(1− sMn )

d lnw/r
=
∑
i∈In

(1− sMni )zni
(1− sMn )zn

[
d ln(1− sMni )

d lnw/r
+

d ln zni/zn
d lnw/r

]
=
∑
i∈In

θni

[
d ln(1− sMni )

d lnw/r
+

d ln zni/zn
d lnw/r

]
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Using (αni − αM )(ζni − 1) = 1
sMni

d ln(1−sMni)
d lnw/r and (αn − αM )(ζNn − 1) = 1

sMn

d ln(1−sMn )
d lnw/r gives

sMn (αn − αM )(ζNn − 1) =
∑
i∈In

θni

[
sMni (αni − αM )(ζni − 1) +

d ln zni/zn
d lnw/r

]
Finally, we have

d ln zni/zn
d lnw/r

=
d lnYni
d lnw/r

+ (1− sMni )(1− αni) + sMni (1− αM )− d lnYn
d lnw/r

− (1− sMn )(1− αn)− sMn (1− αM )

= (−εn)
d lnPni/Pn

d lnw/r
+ (1− sMni )(1− αni) + sMni (1− αM )− (1− sMn )(1− αn)− sMn (1− αM )

= (1− εn)
[
(1− sMni )(1− αni) + sMni (1− αM )− (1− sMn )(1− αn)− sMn (1− αM )

]
= (εn − 1)

[
sMn (αn − αM )− sMni (αni − αM ) + (αni − αn)

]
Plugging this in, we have

sMn (αn − αM )(ζNn − 1) =
∑
i∈In

θni

{
sMni (αni − αM )(ζni − 1)

+(εn − 1)
[
sMn (αn − αM )− sMni (αni − αM ) + (αni − αn)

] }

Using
∑

i∈In θni(1− εn)(αni − αn) = 0, dividing through by sMn (αn − αM ) and subtracting 1 from
each side gives the result.
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