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In the Classical Regression Model we assumed that the variance of the error
was σ2I: that is, with the same variance across observations and no correlation
between observations. In the GCRM we relax this assumption:

E(Y |X) = Xβ

E(ε|X) = 0

V (Y |X) = Σ

V (ε|X) = Σ

Remember Y is n by 1 so V (Y |X) = Σ is n by n- write out the matrix.
Heteroskedasticity- means different diagonal terms.
Autocorrelation/Serial Correlation- non zero off diagonal terms.
First- what are the finite sample properties of the LS Estimator?
Dont want to go immediately to asymptotics b/c in the case of correlated

errors- no longer have iid random sampling. So need a new set of asymptotic
theorems for some “limited” types of correlation.

LS Estimator:

bN = (X ′X)−1X ′Y

E(bN |X) = (X ′X)−1X ′E(Y |X)

= (X ′X)−1X ′Xβ = β

E(bN ) = β

where the last line is LIE.
Thus, OLS is still an unbiased estimator.
The variance of the OLS estimator changes however:

V (bN |X) = (X ′X)−1X ′V (Y |X)X(X ′X)−1

= AV (Y |X)A′

6= σ2(X ′X)−1

Thus, the regular standard errors that we learned earlier are incorrect.



The Gauss Markov Theorem relied on V (Y |X) = σ2I- thus the Gauss
Markov Theorem no longer applies. OLS is no longer the min variance linear
unbiased estimator.

Two possibilities here:
1. Continue to use the OLS estimator but correct the standard errors.
2. Use information about the new variance matrix to suggest a new estima-

tor.
For right now will cover 2- but will eventually go back to 1 at the end!
Example of 2- Imagine we know the variance of some observations are higher

than others- can improve the estimator by giving more weight to more precise
estimates- can get a lower variance matrix of the estimates than (X ′X)−1X ′ΣX(X ′X)−1.

1 Generalized Least Squares Estimator (GLS)
Don’t just minimize the sum of squared residuals as we did for OLS.

b∗N = (X ′Σ−1X)−1X ′Σ−1Y

This is like one of your problem set questions- where ∆ replaced Σ−1.
Here Σ−1 is positive definite and non stochastic. In the GLS case we know

Σ (at least up to a constant of proportionality).
What are the small sample properties of this new estimator?

E(b∗N |X) = (X ′Σ−1X)−1X ′Σ−1E(Y |X)

= (X ′Σ−1X)−1X ′Σ−1Xβ

= β

V (b∗N |X) = A∗V (Y |X)A∗
′

= (X ′Σ−1X)−1X ′Σ−1ΣΣ−1X(X ′Σ−1X)−1

= (X ′Σ−1X)−1

Theorem 1. Aitken’s Theorem:
In the GCRM model, with Σ known, the minimum variance linear unbiased

estimator of β is b∗N .
If Σ = I, then we have the LS estimator.

Thus, this theorem is a generalization of the Gauss-Markov Theorem.

Proof. Show that the GCRM is equivalent to the CRM on transformed data.
First we can diagonalize the variance matrix Σ (where we use the fact that

its positive definite and symmetric):

Σ = CΩC ′
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where C is a matrix containing all n eigenvectors and Ω is a matrix with 0
off diagonals and diagonals of the eigenvalues. Now, we know CC ′ = C ′C = I
since the eigenvectors are of unit value (c′ici) = 1 and are linearly independent.
Then:

Σ−1 = (CΩC ′)−1

= (C ′)−1Ω−1C−1

= CΩ−1C ′

Label P = CΩ−1/2C ′.
Then:

PP ′ = CΩ−1/2C ′CΩ−1/2C ′

= CΩ−1C ′ = Σ−1

and

PΣP ′ = CΩ−1/2C ′CΩC ′CΩ−1/2C ′

= I

Now let us transform the data- weighting Y and X by the inverse of the
square root of the variance matrix-

Y ∗ = PY

X∗ = PX

Then the transformed data satisfy the assumptions of the CRM:

E(Y ∗|X∗) = E(PY |X) = PXβ = X∗β

V (Y ∗|X∗) = V (PY |X) = PV (Y |X)P ′

= PΣP ′ = I

Rank(X∗) = Rank(X) = k

Thus, the transformed data meets the assumptions of the CRM.
Now, if we regress Y ∗ on X∗:

X∗
′
X∗ = X ′P ′PX = X ′Σ−1X

X∗
′
Y ∗ = X ′P ′PY = X ′Σ−1Y

b∗∗N = (X ′Σ−1X)−1X ′Σ−1Y

So the OLS estimator in the transformed case is the same as the GLS esti-
mator. If we apply the Gauss-Markov Thm on the transformed data we can see
that GLS is now the min variance linear unbiased estimator or BLUE.
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1. Notice here that b∗N is the solution to the minimization of the sum of
squared residuals problem for the transformed data:

minc U∗
′
U∗

U∗ = Y ∗ −X∗c
= PY − PXc
= P (Y −Xc)

minc U ′Σ−1U

minc (Y −Xc)′Σ−1(Y −Xc)

This latter problem is the square of the Mahalanobis distance between Y
and Xc. The Mahalanobis distance formula is adjusting for different variances
(higher variance observations should be downweighted as they provide less info)
and correlations (two highly correlated obs provide less info than 2 uncorrelated
obs- if perfect correlation like have 1 obs only). Efficient GMM does the same
thing for moments.

2. This applies for Σ known exactly or up to some factor of proportionality.
e.g., Σ = σ2Ω, σ2 is unknown. But if Ω is known, then we can apply GLS.

V (Y ∗|X∗) = σ2I

just as in the OLS case.
3. Estimation in practice- you can always transform the data and then run

an OLS regression.

2 Feasible GLS
If Σ is unknown, what can we do?

Feasible GLS is a two step estimator.
1. Estimate ΣN with Σ.
2. Use the GLS estimator using ΣN in place of Σ.
If ΣN is a consistent estimator of Σ, then FGLS has the same asymptotic

properties as GLS.
But need some prior information on the variance matrix.
Need some prior information- b/c for a consistent estimator of variance ma-

trix, need to have more information on each parameter in matrix as sample size
increases

If the variance of every observation is different- no more info on any element
of matrix as sample size rises- “Incidental Parameters Problem”

One ex- individual specific parameters on slope- goes into error- unless pa-
rameterize through some distn.

Some examples we will cover:
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1. Pure heteroskedasticity and some info on form (women and men have
different errors).

2. Homoskedasticity and off diagonal terms have covariances that depend
on a single parameter.

2.1 Pure Heteroskedasticity
Pure heteroskedasticity- examples

y= food consumption, x= income
poor people-only eat fast food
rich people- sometimes fast food, sometimes expensive food
or
y= avg class grade
bigger classes have more obs in average- so lower variance
Basic idea of the GLS estimator:
Provide more weight to more precise observations, so optimally reweight

data.
Sometimes called “Weighted Least Squares”.
We have the following regression model:

E(Y |X) = Xβ

V (Yi|Xi) = σ2
i

Rank(X) = k

Write out Σ- different diagonals and zero off diagonals.
P n by n matrix- diagonal matrix with 1

σi
on the diagonal. (Write it out).

Now- verify that P satisfies the earlier properties:

PP ′ = Σ−1

PΣP ′ = I

Three approaches:
1. Run OLS and adjust the standard errors to match arbitrary heteroskedasticity-

White std. errors-will cover this case later.
2. Suppose Σ is known. Implement the GLS estimator.

b∗N = (X ′ΣX)−1(X ′Σ−1Y )

Y ∗ = PY

X∗ = PX

What are these P matrices doing?
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Y ∗i = Yi(1/σi) = Yi/σi

X∗i = Xi/σi

Thus, more weight is given to observations with smaller variances.
Then regress Y ∗ on X∗- get b∗N .

E(Y |X) = Xβ = β1 ∗ 1 + β2 ∗X2 + β3 ∗X3 + ...+ βkXk

ŷ∗ = b∗1X1 + b∗2X
∗
2 + ...+ b∗kX

∗
k

Here X1 = 1/σi- so don’t put a constant/intercept in the new regression!!
If iid sampling, can apply asymptotic results and get consistency.
3. Σ is unknown- so we need a consistent estimator of it.
One example- White Standard error variance matrix- will cover later.
Or have some prior info.
Then we have the following two step procedure:
1. Consistently estimate Σ.

ΣN →p Σ

2. Treat ΣN as if it were Σ and implement GLS.
What prior information?
One example- homoskedasticity- its just the identity matrix, up to a constant

of proportionality.
Another example-
Split the n observations as follows- the first set are men and second set

women.
Assume men all have the same variance and women all have the same

variance- but men and women can have different variances.
Thus- instead of having n unknown parameters- just have 2 unknown pa-

rameters.
Notice- as N increases- as long as getting more men and more women- will

have more info to estimate both parameters.
If we can reduce the number of unknown parameters such that Σ can be

consistently estimated using some function of e, then we can use FGLS.
Continuing example-
Observations of men have σ2

m, observations of women have σ2
w.

Then we have two unknowns (σ2
m, σ

2
w) and we know σ2

m = V (ε|male = 1),
σ2
w = V (ε|male = 0).
Order male observations first (WLOG)
The FGLS strategy would be:
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1. Run LS regression of Y on X

e = [emew]

2. Calculate the variance matrix- in this case variance of men and variance
of women:

σ2
mN =

e′mem
Nm

σ2
wN =

e′wew
Nw

3. Transform Y and X by dividing the male observations by σmN and female
observations by σwN .

4. Run LS regression on transformed variables.
Another ex- school size- if sample mean them know variance of mean is

σ2/N - so variances of observations depend on N - so here only one parameter to
estimate.

2.2 Autocorrelation
Models of dependence in data- most common application is time, but can also
have spatial data.

For example: Expect crime rate in urban core to influence crime rate in
expanding spatial rings around it, but this effect will decay with distance.

Another example: Macro model with shocks and impulse responses.
Both models we will study are stationary- a series is (weakly) stationary if

the mean and variance exist and unconditional variances and covariances do not
depend on the time t, i.e.

E(εtεt−j)

does not depend on t (though it can depend on the lag j!)
First Model: AR(1) Model

Yt = β0 + β1Xt + εt

εt = ρεt−1 + ut

Today’s error depends on yesterday’s error, downweighted, plus a random
shock.
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Here ut is iid, so

Cov(ut, ut−j) = 0

V ar(ut) = σ2 ⊥ t

For “stationarity”- define |ρ| < 1. This means that dependence decays over
time.

What are the properties of εt? Of the variance matrix?
It turns out that we can write εt as an infinite sum of all of the ut:

εt = ρεt−1 + ut

= ρ(ρεt−2 + ut−1) + ut

= ρ2εt−2 + ρut−1 + ut

= ρ2(ρεt−3 + ut−2) + ρut−1 + ut

= (ρ3εt−3 + ρ2ut−2) + ρut−1 + ut

= ρlεt−l +

l−1∑
j=0

ρjut−j

As long as |ρ| < 1, we know that

lim
l→∞

ρlεt−l = 0

εt =

∞∑
j=0

ρjut−j

thus εt is an infinite sum of discounted iid shocks (instead of one iid shock
as before).

Then we have that:

Cov(εt−1, ut) = Cov(εt, ut+1) = Cov(

∞∑
j=0

ρjut−j , ut+1)

= 0

since the {ut} are iid.
Since the {ut} are iid the variance of εt should not depend on t (stationarity!!)

V ar(εt) = V ar(ρεt−1 + ut)

σ2
ε = ρ2σ2

ε + σ2
u + 2ρCov(εt−1, ut)

= ρ2σ2
ε + σ2

u

σ2
ε (1− ρ2) = σ2

u

σ2
ε =

σ2
u

1− ρ2
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So the variance is homoskedastic- doesnt depend on time i.e. on observation.
We can also calculate the covariances:

Cov(εt, εt−1) = Cov(ρεt−1 + ut, εt−1)

= ρV ar(εt−1) + Cov(ut, εt−1)

= ρV ar(εt−1) + 0

= ρσ2
ε

Cov(εt, εt−2) = Cov(ρεt−1 + ut, εt−2)

= ρCov(εt−1, εt−2) + Cov(ut, εt−2)

= ρCov(εt−1, εt−2) + 0

= ρ(ρσ2
ε ) = ρ2σ2

ε

Notice nothing here depends on t- only on the lag. If we continue this, we
get the following covariance between t and its jth lag:

Cov(εt, εt−j) = ρjσ2
ε

The dependence between terms slowly dies out as the lag gets further out.
Notice the entire variance matrix can be described by two parameters- σ2

ε and
ρ!!

Write out the entire variance matrix- diagonals are σ2
u

1−ρ2 , off diagonals ρj* σ2
u

1−ρ2

so multiply σ2
u

1−ρ2 by matrix.
The other most common Correlation process- Moving Average Process:

εt = λut−1 + ut

var(εt) = λ2V ar(ut−1) + V ar(ut)

= (1 + λ2)σ2
u

Cov(εt, εt−1) = Cov(λut−1 + ut, λut−2 + ut−1)

= λσ2
u

Cov(εt, εt−2) = Cov(λut−1 + ut, λut−3 + ut−2)

= 0

Can generalize these two:

εt = ρεt−1 + ut + λut−1

9



ARMA(1,1)- 1s are the order of the AR and MA process- can have higher
orders.

I will go the basic GLS/FGLS approach to the AR(1) process.
Can think of this in two ways- difference out the previous time period so the

only error left is ut:

yt = β0 + β1xt + εt

ρyt−1 = ρβ0 + β1ρxt−1 + ρεt−1

(yt − ρyt−1) = (1− ρ)β0 + β1(xt − ρxt−1) + ut

y∗t = (1− ρ)β0 + β1x
∗
t + ut

where:

y∗t = yt − ρyt−1
x∗t = xt − ρxt−1

This procedure is differencing out the dependency- so now the errors are iid
as before!

What do we do for t = 1? In that case there is no x0. Instead, can not include
first observation, or weight down by the variance of the first observation-

V ar(ε1) =
σ2
u

1− ρ2

so weight first observation by
√

1− ρ2.
This procedure is equivalent to formally diagonalizing the variance matrix

and computing P.
P will become:

√
1− ρ2
−ρ 1

−ρ 1
−ρ 1

−ρ 1

Remember up to a constant of proportionality, which is σ2
u.

GLS case- we know ρ- so estimate this transformed regression.
FGLS- we will need to compute ρ using ρ̂.
If ρ is unknown, what is it in the model?

Cov(εt, εt−1) = ρσ2
ε

Cov(εt, εt−1)

V ar(εt−1)
= ρ
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This is just the bivariate slope coefficient of a regression of εt on εt−1.
So we have the following strategy:
1. Run OLS of Y on X- get residuals e (n by 1 vector).
2. Regress et on et−1 (obv dropping one observation).
Get the slope coefficient

ρ̂ =

∑T
t=2 etet−1∑T
t=2 e

2
t−1

3. Transform the data using ρ̂ in place of ρ.

2.3 HACC Estimation and Clustering
(This section is incomplete).

The other approach we can take is to estimate a variance matrix that is
robust to arbitrary levels of heteroskedasticity or autocorrelation while still using
OLS- this is the typical approach used now.

Remember that the variance of the OLS estimator under the GCRM is:

V (bN |X) = (X ′X)−1X ′ΣX(X ′X)−1

Since we know (X ′X)−1 will consistently estimate its population counterpart
the only challenge is to find a consistent estimator VN for V = 1

nX
′ΣX →p

E[X ′ΣX]. The challenge again is lack of knowledge of Σ.
First- let us write out what V will look like:

X1 X2 ... Xn

σ11 σ12 ... σ1n
σ21 σ22

σn1 σnn

X ′1
X ′2
...

X ′n

Remember each Xi here is k by 1- multiplying the first two we get:

∑
j Xjσ1j

∑
j Xjσ2j ...

∑
j Xjσnj

X ′1
X ′2
...

X ′n

LHS is k by n, RHS is n by k
Multiplying it all out we get:
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V =
1

N
X ′ΣX =

1

N

N∑
i=1

N∑
j=1

σijXiX
′
j

If we separate the variance and covariance terms in this gigantic sum, we get:

V =
1

N
X ′ΣX =

1

N

N∑
i=1

N∑
j=1

σijXiX
′
j

=
1

N

N∑
i=1

σiiXiX
′
i +

1

N

N∑
i=1

N∑
j=i+1

σij(XjX
′
j−i +Xj−iX

′
j)

I will proceed in a series of cases:
Pure heteroskedasticity:

E(εiεj |Xi) = 0∀i 6= j

V (εi|Xi) = σii

Here if we knew Σ, since all off-diagonal terms are zeroed-out, we will have:

V = X ′ΣX

=
1

N

N∑
i=1

σiiX
′
iXi

Since we dont know σii, we will replace with the sample analog from the
residuals.

VN =
1

N

N∑
i=1

e2iX
′
iXi
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Here e2i = (Yi−XibN )2 or is the squared residual from OLS. Is this estimator
consistent?

Asymptotics are more complicated as e is a function of the OLS estimator-
so its value is changing as N changes as well as terms being added to the sum.

Under some regularity conditions (so we have Uniform Law of Large Numbers-
won’t cover these in class):

VN =
1

N

N∑
i=1

e2iX
′
iXi

→p E(ε2iX
′
iXi)

= E(E(ε2i |Xi)X
′
iXi)

= E(σiiX
′
iXi)

The last line is by LIE.
Thus, VN converges to the right variance matrix- these are the White Std

errors. They work for arbitrary degrees of heteroskedaticity.
Autocorrelation:
Here we know that we can not just zero out the correlation terms- what to

do?
Let’s assume regularity conditions so asymptotics hold under dependent

sampling- one general case is time series mixing, so we have approximate in-
dependence as the distance between observations gets large.

Lets first take the MA(1) case- so we know there is correlation at the first
lag only- but now want to relax the weak stationary assumption. Then V is:

V =
1

N
X ′ΣX =

1

N

N∑
i=1

σ2XiX
′
i +

1

N

N∑
i=2

σi,i−1(XiX
′
i−1 +Xi−1X

′
i)

We would then use the sample analog of σi,i−1 - eiei−1- so our estimator is:

VN =
1

N
X ′ΣX =

1

N

N∑
i=1

e2iXiX
′
i +

1

N

N∑
i=1

N∑
j=i+1

eiej1(|i− j| ≤ 1)(XjX
′
j−i +Xj−iX

′
j)

We can also write this as:

VN =
1

N
X ′ΣX =

1

N

N∑
i=1

e2iXiX
′
i +

1

N

N∑
i=2

eiei−1(XiX
′
i−1 +Xi−1X

′
i)

By similar asymptotics as before will converge to E(εiεi−1(XiX
′
i−1+Xi−1X

′
i))-

then LIE will give E(σi,i−1(XiX
′
i−1 +Xi−1X

′
i)).
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If we have a MA(q): correlation for q periods- then will have q such lags- as
follows:

VN =
1

N
X ′ΣX =

1

N

N∑
i=1

e2iXiX
′
i +

1

N

N∑
i=1

N∑
j=i+1

eiej1(|i− j| ≤ q)(XjX
′
j−i +Xj−iX

′
j)

in the general case you would have:

VN =
1

N
X ′ΣX =

1

N

N∑
i=1

σ2XiX
′
i +

1

N

N∑
i=1

N∑
j=i+1

λT (l)eiej(XjX
′
j−i +Xj−iX

′
j)

Why is λT (l) needed? At very large lags there are few observations- so the
variance of those parts of the variance matrix is huge- hence λ is a weighting
function to weight them down, or zero them out. There is a bias here from
excluding parts so there is a bias-variance tradeoff. Example- λ = 1 if below
some lag cutoff. Triangle weights also possible.

2.4 Clustering
Clustering addresses a similar problem- correlations between observations in
the same group- the only difference is group is not a lag in time series, can be
anything.

Ex. state or Dominicks store or product
One ex- observe wages and schooling- but state level shocks in wage errors

(demand shocks across states)- so error in wages will be correlated within state-
less indep observations

The underlying regression model is now:

Yig = X ′igβ + uig

where g is the group or cluster- we want arbitrary correlation within this
group. One type of error that could generate this would be:

uig = αg + νig

αg is a random component common to everyone in the group, while νig is
iid.

In the general case, the V matrix now becomes:
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VN =
1

N
X ′ΣX =

1

N

N∑
i=1

e2iXiX
′
i +

1

N

N∑
i=1

N∑
j=i+1

eiej1(i and j ∈ g)(XjX
′
j−i +Xj−iX

′
j)

Thus, we only include the covariance terms for same group observations-
using the OLS residual correlation to proxy for the true correlation. This pro-
cedure is then robust to arbitrary forms of correlation within the group!

Clustering now is very common in empirical work.
This will work as long as have enough clusters- can’t have just one cluster

and so arbitrary correlation across all observations (same as in time series case-
why need weighting function). In general need at least 50 clusters- asymptotics
become as number of clusters goes to infinity.
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