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Devesh Raval

In the Classical Regression Model we assumed that the variance of the error
was ¢2I: that is, with the same variance across observations and no correlation
between observations. In the GCRM we relax this assumption:

E(Y|X) = X8
E(eX) = 0
VY|X) =

VieX) = %

Remember Y is n by 1 so V(Y|X) = ¥ is n by n- write out the matrix.

Heteroskedasticity- means different diagonal terms.

Autocorrelation/Serial Correlation- non zero off diagonal terms.

First- what are the finite sample properties of the LS Estimator?

Dont want to go immediately to asymptotics b/c in the case of correlated
errors- no longer have iid random sampling. So need a new set of asymptotic
theorems for some “limited” types of correlation.

LS Estimator:

by (X'X)"'X'Y
BEby|X) = (X'X)'X'E(Y|X)
= (X'X)'X'X5=8
E(y) = B

where the last line is LIE.
Thus, OLS is still an unbiased estimator.
The variance of the OLS estimator changes however:

V(bn|X) (X' X) ' X'VYIX)X(X'X)™!
AV(Y|X)A'
# oX(X'X)™!

Thus, the regular standard errors that we learned earlier are incorrect.



The Gauss Markov Theorem relied on V(Y|X) = o%I- thus the Gauss
Markov Theorem no longer applies. OLS is no longer the min variance linear
unbiased estimator.

Two possibilities here:

1. Continue to use the OLS estimator but correct the standard errors.

2. Use information about the new variance matrix to suggest a new estima-
tor.

For right now will cover 2- but will eventually go back to 1 at the end!

Example of 2- Imagine we know the variance of some observations are higher
than others- can improve the estimator by giving more weight to more precise
estimates- can get a lower variance matrix of the estimates than (X’X) "' X'S X (X' X)L,

1 Generalized Least Squares Estimator (GLS)

Don’t just minimize the sum of squared residuals as we did for OLS.
by = (X'S71X)7IX'y "y

This is like one of your problem set questions- where A replaced X7 1.

Here X! is positive definite and non stochastic. In the GLS case we know
Y (at least up to a constant of proportionality).

What are the small sample properties of this new estimator?

Eby|X) = (X'S7'X)7'X'S7'E(Y|X)
= (X'o7x)"IX'27Xp
= p
V(by|X) = AV(Y]X)AY
= Xrlx)ix'ylyeplx(x'elx)!
(X's1x)!

Theorem 1. Aitken’s Theorem:

In the GCRM model, with ¥ known, the minimum variance linear unbiased
estimator of 5 is by .

If ¥ = I, then we have the LS estimator.

Thus, this theorem is a generalization of the Gauss-Markov Theorem.

Proof. Show that the GCRM is equivalent to the CRM on transformed data.
First we can diagonalize the variance matrix ¥ (where we use the fact that
its positive definite and symmetric):

Y o= CQC'



where C is a matrix containing all n eigenvectors and 2 is a matrix with 0
off diagonals and diagonals of the eigenvalues. Now, we know CC’' = C'C =1
since the eigenvectors are of unit value (ci¢;) = 1 and are linearly independent.
Then:

> = (cac) !
_ (Cl)flgflcfl
co !
Label P = CQ~1/2(".
Then:
PP = CcQ 2003
= CcQ ¢’ =x""
and

cQ-\2eenc' e 2!
I

PP

Now let us transform the data- weighting ¥ and X by the inverse of the
square root of the variance matrix-

Y* = PY
X* = PX

Then the transformed data satisfy the assumptions of the CRM:

E(Y*|X*) = E(PY|X)=PXB=X"3

V(Y*IX*) = V(PY|X)=PV(Y|X)P'
= PYP =1

Rank(X*) = Rank(X)=%k

Thus, the transformed data meets the assumptions of the CRM.
Now, if we regress Y* on X*:

X*X* = X'PPX=X¥'X
X*y* = X'P'PY =X'2°ly
by = (X'olx)TIX'2Tly

So the OLS estimator in the transformed case is the same as the GLS esti-
mator. If we apply the Gauss-Markov Thm on the transformed data we can see
that GLS is now the min variance linear unbiased estimator or BLUE. O



1. Notice here that b}, is the solution to the minimization of the sum of
squared residuals problem for the transformed datas:

min, Ur'ur
U* = Y"—X"%c
= PY — PXc
=  P(Y - Xo¢)
min, U'S7'U

min, (Y — X¢)/S7HY — X¢)

This latter problem is the square of the Mahalanobis distance between Y
and Xc¢. The Mahalanobis distance formula is adjusting for different variances
(higher variance observations should be downweighted as they provide less info)
and correlations (two highly correlated obs provide less info than 2 uncorrelated
obs- if perfect correlation like have 1 obs only). Efficient GMM does the same
thing for moments.

2. This applies for ¥ known exactly or up to some factor of proportionality.

e.g., ¥ = 020, 02 is unknown. But if  is known, then we can apply GLS.

V(Y*IX*) = o

just as in the OLS case.
3. Estimation in practice- you can always transform the data and then run
an OLS regression.

2 Feasible GLS

If ¥ is unknown, what can we do?

Feasible GLS is a two step estimator.

1. Estimate ¥ with 2.

2. Use the GLS estimator using ¥ in place of X.

If ¥ is a consistent estimator of 3, then FGLS has the same asymptotic
properties as GLS.

But need some prior information on the variance matrix.

Need some prior information- b/c for a consistent estimator of variance ma-
trix, need to have more information on each parameter in matrix as sample size
increases

If the variance of every observation is different- no more info on any element
of matrix as sample size rises- “Incidental Parameters Problem”

One ex- individual specific parameters on slope- goes into error- unless pa-
rameterize through some distn.

Some examples we will cover:



1. Pure heteroskedasticity and some info on form (women and men have
different errors).

2. Homoskedasticity and off diagonal terms have covariances that depend
on a single parameter.

2.1 Pure Heteroskedasticity

Pure heteroskedasticity- examples
y= food consumption, x= income
poor people-only eat fast food
rich people- sometimes fast food, sometimes expensive food
or
y= avg class grade
bigger classes have more obs in average- so lower variance
Basic idea of the GLS estimator:
Provide more weight to more precise observations, so optimally reweight
data.
Sometimes called “Weighted Least Squares”.
We have the following regression model:

E(Y|X) = X8
V(Yi|X)) = o}
Rank(X) = k

Write out Y- different diagonals and zero off diagonals.
P n by n matrix- diagonal matrix with Ui on the diagonal. (Write it out).
Now- verify that P satisfies the earlier properties:

pp = x!
PYP = 1

Three approaches:

1. Run OLS and adjust the standard errors to match arbitrary heteroskedasticity-
White std. errors-will cover this case later.

2. Suppose X is known. Implement the GLS estimator.

by = (X'IZX)THX'=TY)
Y* = PY
X* = PX

What are these P matrices doing?



Y = Yi(l/oi) =Yi/o
AX?r = Xi/ai

Thus, more weight is given to observations with smaller variances.
Then regress Y* on X*- get by .

g = bXy +bXE .+ bLX]

Here X1 = 1/0;- so don’t put a constant/intercept in the new regression!!
If iid sampling, can apply asymptotic results and get consistency.

3. X is unknown- so we need a consistent estimator of it.

One example- White Standard error variance matrix- will cover later.

Or have some prior info.

Then we have the following two step procedure:

1. Consistently estimate X..

YN —p b))

2. Treat Xy as if it were ¥ and implement GLS.

What prior information?

One example- homoskedasticity- its just the identity matrix, up to a constant
of proportionality.

Another example-

Split the n observations as follows- the first set are men and second set
wormen.

Assume men all have the same variance and women all have the same
variance- but men and women can have different variances.

Thus- instead of having n unknown parameters- just have 2 unknown pa-
rameters.

Notice- as N increases- as long as getting more men and more women- will
have more info to estimate both parameters.

If we can reduce the number of unknown parameters such that ¥ can be
consistently estimated using some function of e, then we can use FGLS.

Continuing example-

Observations of men have o2,, observations of women have o2

Then we have two unknowns (02,,02) and we know o2, = V(e|male = 1),
02 = V(elmale = 0).

Order male observations first (WLOG)

The FGLS strategy would be:



1. Run LS regression of Y on X

e = [emew)

2. Calculate the variance matrix- in this case variance of men and variance
of women:

!
2 N €,Em
UmN - N
m
!
0_2 _ €w€w
wN
Ny

3. Transform Y and X by dividing the male observations by ¢,y and female
observations by o, .

4. Run LS regression on transformed variables.

Another ex- school size- if sample mean them know variance of mean is
02 /N- so variances of observations depend on N- so here only one parameter to
estimate.

2.2 Autocorrelation

Models of dependence in data- most common application is time, but can also
have spatial data.

For example: Expect crime rate in urban core to influence crime rate in
expanding spatial rings around it, but this effect will decay with distance.

Another example: Macro model with shocks and impulse responses.

Both models we will study are stationary- a series is (weakly) stationary if
the mean and variance exist and unconditional variances and covariances do not
depend on the time t, i.e.

E(6t€t_j)

does not depend on ¢ (though it can depend on the lag j!)
First Model: AR(1) Model

Y, = Bo+BiXi+e
PEL—1 + Uy

€t

Today’s error depends on yesterday’s error, downweighted, plus a random
shock.



Here u; is iid, so

Cov(ug, us—;) = 0
Var(u;)) = o> Lt
For “stationarity”- define |p| < 1. This means that dependence decays over
time.

What are the properties of ¢;7 Of the variance matrix?
It turns out that we can write ¢; as an infinite sum of all of the u;:

€& = pPe—1+ Ut
= plper—2+us—1) +us
= pleo+pu—1+u
= pP(per—s + Ut—2) + pus_1 + uy
= (pPe—s + pPw—2) + pup_1 +

-1
_ l J .
= péE&—1+ Pl UL
=0

As long as |p| < 1, we know that

lim ple,; = 0
=00
oo
_ E J .
€ = P Ut—j
J=0

thus ¢; is an infinite sum of discounted iid shocks (instead of one iid shock
as before).
Then we have that:

Cov(er—1,ur) = Cov(eg, upp1) = Cov(z pjut,]-,utﬂ)
j=0
=0

since the {u;} are iid.
Since the {u;} are iid the variance of ¢, should not depend on t (stationarity!!)

Var(e) = Var(pei—1 + up)
‘73 = p2062 + ai + 2pCov(€ep—1,ut)
= p20€2 + oﬁ
d(1—p*) = o
ol = 1 Uipz



So the variance is homoskedastic- doesnt depend on time i.e. on observation.
We can also calculate the covariances:

Cov(er,ei—1) = Cov(pes—1 + ug, €4-1)
= pVar(ei—1) + Cov(ug, 1)
pVar(e—1)+0

2
po

Cov(e, e1—2) = Cov(per—1 + ug, €4-2)
= pCov(€e—1,€1—2) + Cov(ug, €,—2)
= pCov(€—1,€64-2) +0
= plpod) = p’o?
Notice nothing here depends on t- only on the lag. If we continue this, we
get the following covariance between t and its jth lag:

Covlerery) = plo

The dependence between terms slowly dies out as the lag gets further out.
Notice the entire variance matrix can be described by two parameters- o2 and

I
p o2 2

Write out the entire variance matrix- diagonals are ;7% , off diagonals P 1?;) -
2
a

so multiply 1fp2 by matrix.
The other most common Correlation process- Moving Average Process:

€& = Aup_1+up
var(e)) = NVar(ug_1)+ Var(uy)
= (1+A)o;,
Cov(e,€—1) = Cov(Aug—1 + U, Mug—o + up—1)
= \o?
Cov(eg, €—2) = Cov(Aug—1 + ug, Mug—3 + up—2)
= 0

Can generalize these two:

€ = pe—1+ U+ Mgy



ARMA(1,1)- 1s are the order of the AR and MA process- can have higher
orders.

I will go the basic GLS/FGLS approach to the AR(1) process.

Can think of this in two ways- difference out the previous time period so the
only error left is uy:

Yy = Bo+fiwite
pyt—1 = pBo+ B1pri—1 + per—1
(e —pye—1) = (1—=p)Bo+Bi(xs — pri1) +us
yr = (1—p)Bo+Bizy +w

where:

Yi = Yt — PYi—1

*
Ty Ty — PTe—1

This procedure is differencing out the dependency- so now the errors are iid
as before!

What do we do for ¢ = 17 In that case there is no z. Instead, can not include
first observation, or weight down by the variance of the first observation-

Var(e;) = 1_“p2

so weight first observation by /1 — p2.

This procedure is equivalent to formally diagonalizing the variance matrix
and computing P.
P will become:

Remember up to a constant of proportionality, which is o2.
GLS case- we know p- so estimate this transformed regression.
FGLS- we will need to compute p using p.

If p is unknown, what is it in the model?

Cov(es, €—1) = pa?
Cov(er,e1-1)
Var(e—1) P

10



This is just the bivariate slope coefficient of a regression of €; on €;_1.
So we have the following strategy:

1. Run OLS of Y on X- get residuals e (n by 1 vector).

2. Regress e; on e;—1 (obv dropping one observation).

Get the slope coefficient

T
Do Ctet—1

T
D=2 e

3. Transform the data using p in place of p.

pA =

2.3 HACC Estimation and Clustering

(This section is incomplete).

The other approach we can take is to estimate a variance matrix that is
robust to arbitrary levels of heteroskedasticity or autocorrelation while still using
OLS- this is the typical approach used now.

Remember that the variance of the OLS estimator under the GCRM is:

VinlX) = (X'X)'X'EX(X'X)!

Since we know (X’X)~! will consistently estimate its population counterpart
the only challenge is to find a consistent estimator Vy for V = %X "X —,
E[X'YX]. The challenge again is lack of knowledge of X.

First- let us write out what V' will look like:

/
g11 012 . O1n Xl
/
0921 0922 X2
X, X .. X,
!
Onl Onn Xn

Remember each X; here is k by 1- multiplying the first two we get:

Xi

X5
2 X0y 2 Xjoay e 30 Xjom,

X/

LHS is k by n, RHS is n by k
Multiplying it all out we get:

11



1 1 N N
V:NX’EX = N; :1ainiX;

J

If we separate the variance and covariance terms in this gigantic sum, we get:

1 1 N N
_ / — X X!
V=$XEX = o > XX
i=1 j=1
1 N 1 N N
- N Z:ZIUMX%XZ + N ;j;q Oij (XJXj it XJﬂXj)

I will proceed in a series of cases:
Pure heteroskedasticity:

VieilXi) = oi

Here if we knew X, since all off-diagonal terms are zeroed-out, we will have:

vV = X'BX
1 &

= *ZUM‘X{Xi
Ni:l

Since we dont know o;;, we will replace with the sample analog from the
residuals.

1 N
_ 2y x.
Vy = —E}_leiXin

12



Here €2 = (V; — X;by)? or is the squared residual from OLS. Is this estimator
conswtent?

Asymptotics are more complicated as e is a function of the OLS estimator-
so its value is changing as N changes as well as terms being added to the sum.

Under some regularity conditions (so we have Uniform Law of Large Numbers-
won’t cover these in class):

1
Vv = Nzefxgxi

E(e} X[ X;)
= ((2|X) 1 Xi)
E(0uX[X;)

The last line is by LIE.

Thus, Vy converges to the right variance matrix- these are the White Std
errors. They work for arbitrary degrees of heteroskedaticity.

Autocorrelation:

Here we know that we can not just zero out the correlation terms- what to
do?

Let’s assume regularity conditions so asymptotics hold under dependent
sampling- one general case is time series mixing, so we have approximate in-
dependence as the distance between observations gets large.

Lets first take the MA(1) case- so we know there is correlation at the first
lag only- but now want to relax the weak stationary assumption. Then V is:

N N
_ 1 / _ 1 2 / 1 / /
V= NX ¥X == N ii - g )(1)(7 + N ii - O'i7i_1(XZ‘X1v_1 + Xi—lXi)

We would then use the sample analog of ¢; ;1 - e;e;_1- so our estimator is:

1
VN = NX/EX 72 2X X, + *Z Z elej |’L —j| < 1)(X]X.;7’L +XJ,ZXJ/)
=1 j=i+1

We can also write this as:

N N
. 1., _ 1 2 : 2 / 1 § U 4
VN = NX X = N - €; XlXZ + N 2 eieifl(XiXi_l + Xilei)

By similar asymptotics as before will converge to E(e;e;—1(X; X, +X;-1X}))-
then LIE will give E(Ji’ifl(Xin{_l + X’Llez/))

13



If we have a MA(q): correlation for q periods- then will have q such lags- as
follows:

N N N
1 1 1 o
Vy = NX’EX =¥ > eIX X[+ ¥ > > eieil(li — gl < (XX + X X))
i=1 i=1 j=i+1

in the general case you would have:

N N N
1 1 1
VN = NX/EX = N E O'QX,‘Xl{ + N E E /\T(l)eiej(XjXé_i + Xj_,*Xé)
i=1

i=1 j=i+1

Why is Ap(l) needed? At very large lags there are few observations- so the
variance of those parts of the variance matrix is huge- hence )\ is a weighting
function to weight them down, or zero them out. There is a bias here from
excluding parts so there is a bias-variance tradeoff. Example- A = 1 if below
some lag cutoff. Triangle weights also possible.

2.4 Clustering

Clustering addresses a similar problem- correlations between observations in
the same group- the only difference is group is not a lag in time series, can be
anything.

Ex. state or Dominicks store or product

One ex- observe wages and schooling- but state level shocks in wage errors
(demand shocks across states)- so error in wages will be correlated within state-
less indep observations

The underlying regression model is now:

ij' = X:gﬁ + uig

where g is the group or cluster- we want arbitrary correlation within this
group. One type of error that could generate this would be:

Uig = Qg+ Vig

oy is a random component common to everyone in the group, while v;, is
iid.
In the general case, the V matrix now becomes:

14



N N N
1 1 1 . .
Vy = =X'SX =N E e? X X! + N E E eiejl(i and j € g)(X; X, + X X})
i=1

N — &
1=1 j=1i+1

Thus, we only include the covariance terms for same group observations-
using the OLS residual correlation to proxy for the true correlation. This pro-
cedure is then robust to arbitrary forms of correlation within the group!

Clustering now is very common in empirical work.

This will work as long as have enough clusters- can’t have just one cluster
and so arbitrary correlation across all observations (same as in time series case-
why need weighting function). In general need at least 50 clusters- asymptotics
become as number of clusters goes to infinity.
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