
OLS and the Classical Regression Model

Devesh Raval

1 Projection- Geometry of OLS
In the previous classes, I went over three different analogy estimators for OLS.
Now- will go to the matrix algebra projection interpretation of OLS. Basically,
OLS is a projection in the X space in the y direction.

Our dependent variable is Y and independent variables X = [X1X2...Xk]. I
then define S(X) as a subspace spanned by the x1, ..., xk vectors:

S(X) = {z|z =

k∑
i=1

bixi, bi ∈ <}

Thus, S(X) consists of every vector that can be formed as a linear combi-
nation of the Xi.

Now put up graph example- remember this is all in the population!!
Can always do this- define y as combination of xβ and u- not necessarily

making any assumptions- BLP!!!
xβ line is the “shadow” line of y- closest one can get to y in S(X).
Now to estimation in sample:
Recall how we found β̂ from normal equations (i.e. moment conditions):

x′û = 0

û = y − xβ̂
y = xβ̂ + û

In sample of 2 Xs:

X ′1
X ′2

û = 0

X ′1, X
′
2 both 1 by N, û is N by 1. Thus, the vector û is orthogonal to each

x1 and x2. But then its orthogonal to every vector in S(X). That is,

Xβ ∈ S(X)

(Xβ)′û = β′X ′û = 0



Thus, we know that, for β̂:
1. û is orthogonal to S(X).
2. y = Xβ̂ + û
where by definition Xβ̂ ∈ S(X) also.
See graphic.
Notes on graph- remember that any other β will give a larger ||u||- and

so will be worse. The best projection is one that gives a right angle so û is
perpendicular.

We know that β̂ is chosen such that û minimizes ||u||, where u = y − xβ, so
depends on β. But minimizing ||u|| is the same as min (||u||2)- OLS procedure!!

By Pythagorean Thm:

||y||2 = ||xβ̂||2 + ||û||2

y′y = β̂′XXβ̂ + û′û

TSS = ESS +RSS

Here is a decomposition that tells us about the goodness of fit of the regres-
sion line:

1 =
ESS

TSS
+
RSS

TSS

Since y = Xβ̂ + û, and β̂ = (X ′X)−1X ′Y and û = Y −X(X ′X)−1X ′Y

Y = Xβ̂ + û

= X(X ′X)−1X ′Y + (I −X(X ′X)−1X ′)Y

Y = PY +MY

where M = I − P .
Thus, β̂ decomposes Y into two vectors- P projects Y into S(X). M projects

Y into a space orthogonal to S(X).
Some properties of these matrices, given that rank(X) = k:
i) P = P 1 = P 2- P is symmetric and idempotent.
ii) rank(P ) = k
iii) N eigenvalues of P- k are 1s, N-K 0s
iv) M is idempotent, rank(M) = N − k
v) of N eigenvalues, N −K 1s, K 0s
We call P the projection matrix, M the annihalator matrix. Why?
P will take any vector and give the part that is projected onto S(X). M will

take out the part that can be projected onto S(X) and give the part orthogonal
to S(X). Thus PY gives the fitted values of the regression andMY the residuals.

What if we take X and find PX? Each column of X projected on S(X) but
each column of X ∈ S(X)- so what do we obtain?
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PX = X or X(X ′X)−1X ′X = X.
Get fitted value of X if start with X- predict perfectly!!
Here
If we take X and find MX- there is no residual.
i.e. (I −X(X ′X)−1X ′)X = 0.
Since X is in S(X) nothing can be orthogonal to it- so no residuals.

2 Asymptotic Properties of LS Estimator
Remember that we showed that in the population, the BLP is:

β = (E(X ′X)−1E(X ′Y )

either by solving the LS problem or by constructing U s.t. E(X ′U) = 0 and
Y = Xβ+U . No assumptions were made here except the rank condition on X.

We can then define the sample estimator bN = EN (X ′X)−1EN (X ′Y ) through
the analogy principle. I will now show that it’s consistent and asymptotically
normal- nice properties!!

Consistency:
By the Law of Large Numbers,

EN (X ′X) →p E(X ′X)

EN (X ′Y ) →p E(X ′Y )

By the Slutsky and Mann Wald Thms:

EN (X ′X)−1EN (X ′Y ) →p (E(X ′X)−1E(X ′Y )

= β

Asymptotic Normality:
Note the following identity:

β = EN (X ′X)−1EN (X ′X)β

I then use it as follows:

√
N(bN − β) =

√
N(EN (X ′X)−1EN (X ′Y )− β)

=
√
N(EN (X ′X)−1EN (X ′Y )− EN (X ′X)−1EN (X ′X)β)

= EN (X ′X)−1
√
N(

1

N

∑
i

X ′iYi −
1

N

∑
i

X ′iXiβ)

= EN (X ′X)−1
√
N(

1

N

∑
i

X ′i(Yi −Xiβ))

= EN (X ′X)−1
√
N(EN (X ′U))
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Remember we know by the first order conditions to construct the BLP in the
population that

E(X ′U) = 0

We then have that:

EN (X ′X)−1 →p E(X ′X)−1
√
N(EN (X ′U)) =

√
N(EN (X ′U)− E(X ′U))

→d N(0, E(X ′UU ′X))

This is using the CLT- impt assuming iid sampling!!!- Cant have correlation
between variables.

Putting these together, and using the CMT:

√
N(bN − β) →d N(0, V )

V = E(X ′X)−1E(X ′UU ′X)E(X ′X)−1

This matrix is k by k show why given X is n by k.
A Special Case:
Conditional Homoskedasticity, No Autocorrelation
No autocorrelation- since CLT depends on iid sampling everything above

rested on this.

E(X ′UU ′X) = E(X ′XU2)

Lets do this in sums:

1

N

∑
i

X ′iUiU
′
iXi =

1

N

∑
i

X ′iXiU
2
i

Conditional Homoskedasticity:

E(U2|X) = E(U2)∀X

Observe then that

E(X ′XU2|X) = X ′XE(U2|X)

= X ′XE(U2)

By the LIE,

E(X ′XU2) = EX(E(X ′XU2|X))

= E(X ′XE(U2)) = E(X ′X)E(U2)
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If we put this in the formula for V:

V = E(X ′X)−1E(X ′UU ′X)E(X ′X)−1

= E(X ′X)−1E(X ′X)E(U2)E(X ′X)−1

= E(X ′X)−1E(U2)

In the HW you have to derive what the bivariate version of this looks like for
the Linear Max Lik case.

3 Classical Regression Model
Here we start putting some assumptions- to get finite sample results. Already
derived the asymptotic results without any assumptions!!

Assumption 1. E(Y |X) = Xβ- this states that the CEF is linear.

Notice that this linearity is linear in terms of parameters β, not X.
Another way to put this is Y = Xβ + ε or E(ε|X) = 0.

Assumption 2. V (Y |X) = σ2I or V (ε|X) = σ2I.

This assumes homoskedasticity and no autocorrelation- will get to this a
minute.

Assumption 3. Rank(X) = k

This is no perfect multicollinearity.
Give an example with constant, male, and female.
Fix constant at 2- can put male at 10, female at 2 or constant at 1, male at

11, female at 3.
So no one parameter solving everything!!

Assumption 4. X is non-stochastic. In repeated sampling, X always takes on
the same values.

Do not need this but simplifies some proofs. Can think of doing an experiment-
on a farm and set X as amt of fertilizer- always set X same way in different
random samples of experiment.

An alternative to this assumption is the following:

Assumption 4′. Neoclassical Regression Model: X is stochastic (random sam-
pling from the joint distribution {Y,X} ∼ P .

Assumption 5. Classical Normal Regression Model: Y |X ∼ N(Xβ, σ2I)

If take the maximum likelihood estimate of this equation- get the LS estimator-
we already saw this!!

We then have:
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E(Y |X) =

X1β
X2β

Xnβ

where Xi is a 1 by k row of X.

V (Y |X) =matrix with diagonal σ2, offdiagonals zero. n by n matrix. Ex-
plain what that means.

Homoskedastic vs. heteroskedastic results:
Given an example with x axis schooling, y axis wage, z axis distn. Some LS

line in X Y plane, distn around it.
Classic normal - same distribution and variance at each point on LS line.
Classic- same variance at each point on LS line.

3.1 Finite Sample Properties
Note that we didnt need any of these assumptions for the asymptotic results-
only the assumption 2 for a simpler form for the variance.

But for small sample properties do need!
What are the properties of bN = (X ′X)−1X ′Y ?
We start with the rank assumption on X- only assumption on X not Y|X!!.
1. No assumptions on P (Y |X)- distribution of Y |X.

E(bN |X) = E((X ′X)−1X ′Y |X)

= (X ′X)−1X ′E(Y |X)

Since no assumption on P (Y |X)- cant say more! This is because the expectation
of a ratio is not equal to the ratio of an expectation. Cant just break up big
expectation into multiple of smaller ones!!

V (bN |X) = V ((X ′X)−1X ′Y |X)

= (X ′X)−1X ′V (Y |X)X(X ′X)−1

This is similar to variance of limiting distn.
2. E(Y |X) = Xβ

E(bN |X) = E((X ′X)−1X ′Y |X)

= (X ′X)−1X ′E(Y |X)

= (X ′X)−1X ′Xβ = β

If E(bN |X) = β for all values of X, also true unconditionally- this is the
LIE!! We then have an unbiased estimator.

3. V (Y |X) = σ2I

V (bN |X) = (X ′X)−1X ′(σ2I)X(X ′X)−1

= σ2(X ′X)−1

6



V (bN ) = E(V (bN |X)) + V (E(bN |X))

= E(V (bN |X)) = σ2E(X ′X)−1

The first inequality uses a conditional variance equality and the second the fact
that E(bN |X) is a constant as we showed.

Example for intuition:
Let X = [1 X1] This is the bivariate regression case. Note: if you are ever

confused, look at the bivariate regression case!!
Then we have (you should have to do this for HW??):

V (bN |X) = σ2(X ′X)−1

= σ2[

∑
i 1 ∗ 1

∑
i 1 ∗Xi,1∑

i 1 ∗Xi,1

∑
iXi,1 ∗Xi,1

]−1

σ2[
n

∑
i 1 ∗ X̄i,1

nX̄1

∑
iX

2
i,1

]−1

=
σ2

NS2
x1

[
X̄1

2 −X̄1

−X̄1 1
] = [

V ar(b1|x) Cov(b1, b2|x)
Cov(b1, b2|x) V ar(b2|x)

]

Here:

S2
x1 =

1

N − 1

∑
i

(Xi,1 − X̄i)
2

Then:

V (b2N |X) =
σ2

NS2
x1

We can see it increases with σ2- as y has more variance conditional on X
we get less accurate results. Decreases with N and decreases with s2x1- as have
more variance in X- can get better estimate of β- have to think of variance in
X variables!!

4. If we are in the CNLRM:

Y |X ∼ N(xβ, σ2I)

P (bN |X) ∼ N(β, σ2(X ′X)−1)

5.

Theorem 1. Gauss Markov Theorem In the class of linear unbiased estimators,
OLS estimator attains minimum variance.

Proof:
Note: Hopefully this helps with the proof. Let θ̂ and θ̃be estimators of a

vector parameter θ. Then defineA = E((θ̂−θ)(θ̂−θ)′) andB = E((θ̃−θ)(θ̃−θ)′).
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Both of these are mean squared error type calculations- but in vector form. Then
θ̂ is better than θ̃ if:

C ′(B −A)C ≥ 0

for every vector C and every para value, and true without equality for at least
one value of C, one value of parameter.

This is the same as saying B −A non negative definite, B 6= A.
Now the proof.

Proof. Let A = (X ′X)−1X ′ and so β̂ = AY . Then an alternative estimator can
be defined as, WLOG, β̃ = (A+ C)Y - also linear.

Now we calculate the expectation and variance:
The expectation is:

E(β̃|X) = (A+ C)E(Y |X)

= AXβ + CXβ

= β + CXβ

where the second equality comes from OLS matrix algebra. For β̃ to be
unbiased, we need that CX = 0- this will prove handy later.

V (β̃|X) = E((β̃ − E(β̃|X))((β̃ − E(β̃|X))′|X)

= E((β̃ − β)((β̃ − β)′|X)

= E((A+ C)UU ′(A+ C)|X)

=

Here we use

β̃ = (A+ C)(Xβ + U)

= AXβ +AU + CU

β̃ − β = (A+ C)U

Earlier AX = I b/c PX = X.
Continuing:

= E((A+ C)UU ′(A+ C)|X)

= (A+ C)E(UU ′|X)(A+ C)′

= (A+ C)(A+ C)′σ2I

= (A+ C)(A′ + C ′)σ2I

= (AA′ +AC ′ + CA′ + CC ′)σ2
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Since CA′ = CX(X ′X)−1 = 0 for the estimator to be unbiased.
Then we have:

V (β̃|X) = (AA′ + CC ′)σ2

= σ2(X ′X)−1 + σ2CC ′

Thus, V (β̃|X) = V (β̂|X) + σ2CC ′

Since CC ′ is a positive def matrix, σ2 > 0 this is strictly bigger
This fullfills the previous criterion as for any h, h′CC ′h = (C ′h)′(C ′H) =

v′v ≥ 0.
Thus we have shown that β̂ is BLUE- best in MSE!!

Some comments:
1. Still only applies to linear unbiased estimators.
2. If relax homoskedasticity- no longer BLUE- used this assumption in 1

step.
3. Both homoskedastic and normal- MLE and can use Cramer-Rao lower

bound.

4 Model Structure in the CRM
So far we have assumed that we know the correct CEF and use the correct X
variables in the regression. But in real life- may not be able to do this, because:

1. Some variables we can not observe or are not in our dataset
2. There are lots of variables in our dataset- which to use? We do not

necessarily know the true CEF
3. Even if we know which variables are important, how do we put them in

the regression?

4.1 Model Structure
• Dummy Variables and Interactions:

Dummy Variable is just variable that is 1 or 0. For example, male is 1 if someone
is male otherwise 0.

Can use log wage example here.
Draw graph- dummy variables in regression affect intercepts!!
But can also include interactions- affect slope and intercept.
For ex: investigating discrimination:
wage= schooling+female+schooling*female
Does slope of schooling change with sex? Or just intercept?
Can have interactions with continuous variable also- try schooling and ability.

• Logarithms
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Two reasons we in general use logarithms-
Sometimes variables are on a log scale so linear regressions work better in

logs. For example, wages- Mincer regressions!
Second- want to measure elasticities or percentage changes (which are unit-

less)
Remember what an elasticity is-

dlogN

dlogw
=

dN

dw
∗ w
N

Measures the percentage change in N for a percentage change in w- dont
have to worry about the units of N or w.

vs.

dN

dw

only makes sense given units of both quantities. We can estimate an elasticity
by running the following type of regression:

logN = α+ β logw + ε

Production function - in logs get elasticities also.
Nonlinearities:
Draw graph- quadratic CEF- what do residuals look like? what does line

look like?
Can add quadratic, cubic terms to approximate some nonlinearity. If just

have α+ βX, the marginal effect is linear- for example- schooling- same return
from going from 8th to 9th grade as 15th to 16th.

If quadratic, marginal effect now depends on X.
Another way to do this- put in dummy variables. X* 1(in range). Or

schooling- instead of having no of years- HS, college, etc.

4.2 Omitted Variables
What happens if we omit a variable that is in the true CEF?

Example 2. Ability Bias
Y=wage
X1 =years of schooling
X2 = ability
What is the return from going to school?
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The true CEF includes ability:

E(Y |X1, X2) = β0 + β1X1 + β2X2

Thus, β1 measures the gain from extra schooling controlling for ability. If
years of schooling increases by 1 year, Y will increase by β1, after accounting
for ability.

But- in our dataset we don’t have IQ or ability- what can we do?
Just do OLS on years of schooling- what happens to the coefficient on the

years of schooling? Does it really measure the partial effect of schooling on
wages?

4.3 Omitted Variable Rule
Lets start by partitioning X into two sets of variables, X = [X1X2], X is n by
k, X1 n by k1, X2 n by k2.

In our experiment here X belongs in the true CEF- but we only do OLS
with X1. Now, if we could do OLS with the full dataset, we would estimate bN ,
where:

eN = Y −XbN
Y = XbN + eN

This expression is just what Y equals in the sample- no assumptions here.
Now- what happens if we just run the regession of Y on X1? We can think

of the full regression as the long regression and the X1 regression as the short
regression.

We will get b∗1N k1 by 1:

b∗1N = (X ′1X1)−1X ′1Y

= (X ′1X1)−1X ′1(X1b1N +X2b2N + eN )

= b1N + (X ′1X1)−1X ′1X2b2N +X ′1eN

= b1N + (X ′1X1)−1X ′1X2b2N

Here X ′1eN = 0 by the foc of the LS problem.
Thus, we have that the short regression coefficient is:

b∗1N = b1N + Fb2N

F = (X ′1X1)−1X ′1X2

Here X1 is n by k1, X2 is n by k2- F is then k1 by k2. What does F look
like? Its just X2 is replacing Y- or coefficients of regression of X2 on X1.
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We can call this regression the Auxiliary Regression:
Regress X2 on X1:

X2 = X1F +X∗2

where X∗2 is the residual of the regression.
If we look at the bigger picture, the difference between the short regression

coefficient and long regression coefficient is about the total derivative of Y wrt
X1 or the partial derivative of Y wrt X1:

dY

dX1
=

∂Y

∂X1
+

∂Y

∂X2

∂X2

∂X1

What are these partial derivatives in terms of the CRM? How can we derive
them?

Also, which derivative are we interested in? This depends on our economic
question. Go back to the wage example.

If our question is- what is the difference in wages between someone who has
a college degree and someone who has a high school degree, we want the total
derivative.

If our question is- what is the rise in someone’s wage if I make him go to
college, its the partial derivative.

The total derivative is including the fact that those who go to college are
higher ability people and so earn more anyway.

Now- if we omit a variable- is our estimate unbiased? consistent?
Consistency:

b∗1N = b1N + EN (X ′1X1)−1EN (X ′1X2)b2N

→p β1 + E(X ′1X1)−1E(X ′1X2)β2

So inconsistent unless:
1. β2 = 0- so omitted term does not belong in CEF
2. or X1 orthogonal to X2

Bias:

E(b∗1N |X) = E(b1N |X) + (X ′1X1)−1(X ′1X2)E(b2N |X)

= β1 + (X ′1X1)−1(X ′1X2)β2

where the second step relies on the true CEF being E(Y |X) = Xβ.
Thus, we will have the same conditions for biasedness- Omitted Variable

Bias!!
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Lets look at this in the case where X1 and X2 are scalars and there is a
constant:

plim b∗1N =
Cov(x1, y)

V ar(x1)

=
Cov(x1, β0 + β1x1 + β2x2 + u)

V ar(x1)

= β1 +
Cov(x1, x2)

V ar(x1)
β2

where Cov(x1,x2)
V ar(x1)

is the plim of the coefficient of a regression of x2 on x1.
This should be the same basic formula as before.
In the schooling example, the bias should be positive- as β2 is positive (why?)

and schooling and ability are positively correlated (why?). Usually we are in-
terested in both the sign and magnitude of the bias!

4.4 Residual Regression Rule (or Frisch Waugh Thm)
The following are equivalent:

1. Get b2N from regressing Y on X1 and X2.
2. Regress X2 on X1- the auxiliary regression- take the residuals X∗2 and

get regress Y on X∗2
3. RegressX2 onX1- the auxiliary regression- take the residualsX∗2 . Regress

Y on X1 and get residuals Y ∗. Then regress Y ∗ on X∗2 .
Here by equivalent I mean we get the same estimates.
Why is this interesting?
1. Sometimes it can be nice to use the residuals instead of the variables

themselves- I will give some examples below.
2. This “trick” will help us derive results on omitted and irrelevant variable

properties.

Example 3. Demeaning variables:
If we regress a variable on a constant- the value of the constant is the mean

and the residuals are the demeaned variables. (This is b/c E(U) = 0). Thus,
instead of including a constant in the regression we can simply demean all the
variables.

Example 4. Trend Removal
If we are doing time series analysis we may be concerned with a time trend

in the data- some variables are just moving up over time. For ex- imagine effect
of new law on crime- if crime rising over time want to account for that before
seeing how law affects crime- otherwise may find law inc crime just b/c crime
increases.

So- can add a time trend to the regression- or detrend all variables first
(regressing against time trend) and then run regression on detrended variables.
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Example 5. Seasonal Adjustment
Looking for BC patterns, but 1st quarter always has low sales, 4th quarter

high sales. Can put in quarter dummies- or substract quarter means from x
variables and then run regression.

Proof. I wish to show that c2N = (X∗
′

2 X
∗
2 )−1X∗

′

2 Y = b2N
Lets first consider what X∗2 is- its the residual of a regression of X2 on X1.

Thus,

X∗2 = X2 −X1(X ′1X1)−1X ′1X2

= X2 −X1F

= (I −X1(X ′1X1)−1X ′1)X2

= M1X2

Here M1 is the Annihilator Matrix from a regression of X1- so it gives the
residuals of a regression with X1- exactly what we have!

Then:

c2N = (X∗
′

2 X
∗
2 )−1X∗

′

2 Y

= (X∗
′

2 X
∗
2 )−1X ′2M1Y

= (X∗
′

2 X
∗
2 )−1X ′2M1(X1b1N +X2b2N + eN )

Here (X1b1N +X2b2N + eN ) come from a regression of Y on X- can always
do this.

Now, we know M1X1 is zero as a regression of X1 on itself delivers a perfect
fit.

c2N = (X∗
′

2 X
∗
2 )−1X ′2M1(X1b1N +X2b2N + eN )

= (X∗
′

2 X
∗
2 )−1X ′2M1(X2b2N + eN )

=

Again, X ′2M1eN = 0 sinceM1eN = eN as eN is constructed to be orthogonal
to X1 and X2. But then X ′2eN = 0.

c2N = (X∗
′

2 X
∗
2 )−1X ′2M1(X1b1N +X2b2N + eN )

= (X∗
′

2 X
∗
2 )−1X ′2M1(X2b2N + eN )

= (X∗
′

2 X
∗
2 )−1X ′2M1(X2b2N )

= (X∗
′

2 X
∗
2 )−1X ′2M

′
1M1(X2b2N )

= (X∗
′

2 X
∗
2 )−1X∗

′

2 X
∗
2 b2N = b2N

If we also took the residuals from Y- would be equivalent to M1Y above- we
can always do this b/c of symmetric idempotent properties of M1.
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Now I will show:
In Omitted Variable Case, short regression coefficient has a lower variance

than long regression coefficient. Thus, even if short coeff (omitting a var) is
biased, can have lower variance- so bias-variance tradeoff!

I will show that:

V ar(b∗1N |X) = V ar(b1N |X)− FV ar(b2N |X)F ′

Thus its smaller generically unless F=0.

Proof. We know that:

b1N = b∗1N − Fb2N
V ar(b1N |X) = V ar(b∗1N |X) + FV ar(b2N |X)F ′ − Cov(b∗1N , b2N |X)F ′

I will now show that Cov(b∗1N , b2N |X) = 0.
Define A1 = (X ′1X1)−1X ′1 and A∗2 = (X∗

′

2 X
∗
2 )−1X∗

′

2 . Then, using V (Y |X) =
σ2I, we have:

Cov(b∗1N , b2N |X) = Cov(A1Y,A
∗
2Y |X))

= A1V ar(Y |X)A∗
′

2

= σ2(X ′1X1)−1X ′1X
∗
2 (X∗

′

2 X
∗
2 )−1

Now, X ′1X∗2 is the correlation between X1 and the residuals of a regression
of X2 on X1- so these should be zero by definition (the resids are the orthogonal
part.) So the cov term is equal to zero.

Thus-

V ar(b∗1N |X) = V ar(b1N |X)− FV ar(b2N |X)F ′

I have shown that if we omit a variable from the regression, then the other
variables will be biased but will have lower variance- we can try to trade off bias
and variance.

4.5 Irrelevant Variables:
What happens if we put in variables which dont exist in the true CEF? Are the
estimates of the other variables biased?

In our experiment here X2 belongs in the true CEF- but we do OLS with
X1 and X2.
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Thus the long regression is the incorrect regression and the short regression
is the true regression.

There are two ways to see that the OLS coefficients in the long regression
are unbiased and consistent. First, the long CEF is just the short CEF with
β1 = 0- we never said that β had to be nonzero when defining the CEF. Thus,
ests of β2 should be fine, and b1N should be unbiased and consistent for zero.

The algebra is as follows:

c2N = (X∗
′

2 X
∗
2 )−1X ′2M1Y

E(c2N |X) = (X∗
′

2 X
∗
2 )−1X ′2M1E(Y |X)

= (X∗
′

2 X
∗
2 )−1X ′2M1X2β2

= (X∗
′

2 X
∗
2 )−1X ′2M1M1X2β2

= (X∗
′

2 X
∗
2 )−1X∗

′

2 X
∗′
2 β2 = β2

However, the variance of the estimator in the long regression will be higher-
as we showed earlier- the intuition here is that part of what matters in the
variance is the variation in X- if we do the long regression the variation in our
X1 is the residual variation after accounting for other Xs- will be smaller in
general- so larger variances of the estimators.

So- if omit a variable risk biasing the coefficient- but if dont omit then have
a larger variance- bias variance tradeoff!!

What to do in practice- just include the variables that theory specifies, and
do robustness checks!

5 Variance of the LS Estimator in the CRM

5.1 R2

R2 is a measure of the goodness of fit of the regression- how well does a line fit
the data relative to a constant.

Draw the picture.
We have the following identity, which I proved before and will prove again

now:

∑
i

(yi − ȳ)2 =
∑
i

(ŷi − ȳ)2 +
∑
i

e2i

SST = SSR+ SSE

Basic idea- line should have less error than a constant.
Proof:

Y = Ŷ + e

Ŷ ′e = (XbN )′e

= b′NX
′e = 0
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1.

y′y =
∑
i

y2i = (ŷ + e)′(ŷ + e)

= ŷ′ŷ + e′e+ e′ŷ + ŷ′e

= ŷ′ŷ + e′e

2. Mean of y is mean of ŷ:

∑
i

yi =
∑
i

ŷi +
∑
i

ei

ȳ = ¯̂y

ē = 0

If there is an intercept in the regression ē = 0.
3. Then we can subtract out the mean and everything is fine:∑

i

(yi − ȳ)2 =
∑
i

(ŷi − ȳ)2 +
∑
i

e2i

SST = SSR+ SSE

Cross terms and squared mean term are the same on both sides.
Then we define R2 as:

R2 =
SSR

SST
= 1− SSE

SST

=

∑
i(ŷi − ȳ)2∑
i(yi − ȳ)2

= 1− e′e∑
i(yi − ȳ)2

R2 ∈ [0, 1]
Suppose R2 = 1- e′e = 0
ei = 0 for all i. Then Yi = Xib. This means there are no residuals, there is

a perfect linear fit!!
Suppose R2 = 0. Then ŷi = ȳ for all i- then the line is the constant, no

additional info over a constant.
Some notes:
1. R2 only makes sense when there is a constant in the regression- we used

this earlier.
2. R2 tends to increase with the number of X variables- so adjusted R2- put

a penalty for number of variables.
In general in model selection, dont just want to put in all the X variables-

want to penalize fit for more vars.
3. R2 does not mean the model is better!!
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5.2 Variance of the OLS Estimator in Multivariate Case
In the CRM, we have that V (Y |X) = σ2I. Earlier we found that:

V (b1|X) =
σ2

NS2
X1

for the bivariate regression model.
Now- consider a single slope parameter from a multivariate regression model.

b2N = (X∗
′

2 X
∗
2 )−1X∗

′

2 Y

should be 1 by 1-show this!!
Here again X∗2 is the residual of a regression of X2 on all other Xs.
Then we can calculate the variance of the estimator b2N :

V (b2N |X) = σ2(X∗
′

2 X
∗
2 )−1

=
σ2∑
iX
∗2
2i

I will now use the R2 from the auxiliary regression to make a nice form for
this:

R2
2 = 1− X∗

′

2 X
∗
2∑

i(X2i − X̄2)2

X∗
′

2 X
∗
2∑

i(X2i − X̄2)2
= 1−R2

2

X∗
′

2 X
∗
2 = (1−R2

2)
∑
i

(X2i − X̄2)2

= (1−R2
2)NS2

X2

We then have:

V (b2N |X) =
σ2

(1−R2
2)NS2

X2

So- what determines the precision of the estimator?
1. V (Y |X)
2. N
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3. Variance of covariate of X
4. Collinearity between X_2 and other variables
In a sense, collinearity between X_2 and other variables is stripping out

variation in X2.
If R2

2 is zero- no linear relationship between X2 and rest of Xs- just like
bivariate regression- can get same estimate by short or long regression- nothing
will change (on estimate or its variance).

If perfect lin relationship between X_2 and all other Xs, R2
2 goes to 1-

variance goes to infinity (identification problem)
So multicollinearity problem- increases the variance of estimators- cant pre-

cisely estimate the parameter.
Bias-Variance tradeoff- throw out variables to reduce this R2

2, lower variance-
but will bias coefficient.

Now- how do we estimate this variance?
We should observe everything except σ2.
If E(U2|X) = σ2 or V (Y |X) = σ2I, then

V = σ2E(X ′X)−1

VN =
e′e

n− k
EN (X ′X)−1 = EN (e2N )EN (X ′X)−1

Analogy principle at work- but why n-k? b/c E( e′e
n−k ) = σ2- get unbiased

estimate.
VN →p V (why?). Can use divide by n and get biased estimate.
The idea here 1

ne
′e = 1

n

∑
i e

2
i - since the errors in the sample are mean

zero this is the sample variance of the estimator. If the CRM holds, σ2 is the
true population variance of the errors- by the analogy principle use the sample
variance as an estimator!
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