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1 Conditional Distributions
Typically, the data we observe in the real world involves more than one variable.
For this reason, it is useful to consider random vectors. A random vector is just
a function from the sample space to Rd. Each component of the random vector
is itself a random variable. When d = 2, we call this a bivariate random vector.
For ease of exposition, we will specialize to this case for the time being, but the
ideas here extend naturally to the case where d > 2.

1.1 Joint Distributions
The joint distribution of a random vector is just a description of the probabil-
ity with which it takes different values. We now describe two large classes of
distributions for random vectors.

If each component of a random vector (X,Y ) takes on finitely many (or
at most countably many) different values, then (X,Y ) is a discrete random
vector. If we let x1, . . . , xk denote the possible values forX and y1, . . . , y` denote
the possible values for Y , then the joint distribution of (X,Y ) is completely
described by the probability with which it takes each possible pair of values
(xi, yj). The function

p(x, y) = P{X = x, Y = y}

is again referred to as the p.m.f. and it satisfies the following properties:

(i) p(x, y) ≥ 0 for all (x, y);

(ii)
∑k
i=1

∑`
j=1 p(xi, yj) = 1;

(iii) P{(X,Y ) ∈ A} =
∑k
i=1

∑`
j=1 I{(xi, yj) ∈ A}p(xi, yj) for all A ⊆ R2.

If each component of a random vector takes on a continuum of values, then
(X,Y ) is a continuous random vector. Its distribution is completely described
by its p.d.f. f(x, y), which satisfies the following properties:

(i) f(x, y) ≥ 0 for all (x, y);

(ii)
´∞
−∞
´∞
−∞ f(x, y)dxdy = 1;



(iii) P{(X,Y ) ∈ A} =
´∞
−∞
´∞
−∞ I{(x, y) ∈ A}f(x, y)dxdy for all A ⊆ R2.

There are, of course, other types of distributions for random vectors. In par-
ticular, it is possible for X to be a discrete random variable and for Y to be a
continuous random variable. For example, X may be age (measured in years)
and Y may be wages.

As with functions of random variables, a function of a random vector is also
a random variable, that is, if (X,Y ) is a random vector and g : R2 → R is a
function, then g(X,Y ) is a random variable. It is a random variable instead of
a random vector because the resulting quantity is real-valued.

1.2 Marginal Distributions
The marginal distribution of X is just another name for the distribution of X,
but when used in the context of a random vector (X,Y ) it is used to emphasize
the difference between the distribution of X and the joint distribution of (X,Y ).

It is possible to compute the marginal distribution of X from the joint dis-
tribution of (X,Y ). If (X,Y ) is a continuous random vector with p.d.f f(x, y),
then

f(x) =

ˆ ∞
−∞

f(x, y)dy .

1.3 Conditional Distributions
The conditional distribution of Y given X is the distribution of Y when X takes
on a particular value.

If (X,Y ) is a discrete random vector where X takes on values x1, . . . , xk and
Y takes on values y1, . . . , y`, then for any xi such that P{X = xi} > 0

P{Y = yj |X = xi} =
P{X = xi, Y = yj}

P{X = xi}
.

If (X,Y ) is a continuous random vector with p.d.f f(x, y), then for any x such
that f(x) > 0

f(y|x) =
f(x, y)

f(x)
.

1.4 Conditional Expectation
The conditional expectation of Y given X, denoted by E[Y |X], is just the
expectation of the conditional distribution of Y given X. When X takes on a
particular value x, it is denoted by E[Y |X = x]. Intuitively, one should have in
mind the average value of Y over many repeated trials where X = x.

It is important to understand that the conditional expectation of Y given X,
E[Y |X], is a random variable because it is a function of X, which is a random
variable. On the other hand, the conditional expectation of Y givenX evaluated
at a particular value x, E[Y |X = x], is a constant.

If E[Y |X] does not depend on X we say that Y is mean independent of X.
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Example 1. Let (W,S) be a random vector where W is wages and S is an
indicator variable for male (i.e., gender). Then, E[W |S = 1] is the expected
wage conditional on being male, and E[W |S = 0] is the expected wage con-
ditional on being female. They are constants, whereas E[W |S], the expected
wage conditional on the random variable for gender, is a function of a random
variable and thus a random variable itself. If E[W |S = 1] = E[W |S = 0], then
E[W |S] does not depend on S, so W is mean independent of S.

If (X,Y ) is a continuous random vector with p.d.f f(x, y), then for any x
such that f(x) > 0

E[Y |X = x] =

ˆ ∞
−∞

yf(y|x)dy .

Like the regular expectation, we have that “the conditional expectation of
a sum is the sum of the conditional expectations.” Moreover, anything that is
a function of the conditioning variable essentially behaves like a constant with
respect to the conditional expectation.

For any random vector (X,Y ) and functions g : R→ R and h : R→ R,

E[g(X) + h(X)Y |X] = g(X) + h(X)E[Y |X] .

1.5 Law of Iterated Expectations
It is perhaps not surprising that the weighted average of E[Y |X] (weighted by
the distribution of X) is simply E[Y ]. The following theorem, which is known
as the Law of Iterated Expectations, states this important relationship between
the random variable E[Y |X] and E[Y ].

Theorem 2. For any random vector (X,Y ),

E[Y ] = E[E[Y |X]] .

Proof. First suppose (X,Y ) is a discrete random vector where X takes on values
x1, . . . , xk and Y takes on values y1, . . . , y`. In this case,

E[E[Y |X]] =

k∑
i=1

E[Y |X = xi]P{X = xi}

=

k∑
i=1

∑̀
j=1

yjP{Y = yj |X = xi}P{X = xi}

=

k∑
i=1

∑̀
j=1

yjP{Y = yj , X = xi}

=
∑̀
j=1

yj

k∑
i=1

P{Y = yj , X = xi}

=
∑̀
j=1

yjP{Y = yj} = E[Y ] .
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You can modify these arguments for continuous random vectors. The result is
true more generally for any random vector.

The Law of Iterated Expectations is of fundamental importance and has
many applications. Among others, we can use it to conclude that if E[Y |X] = c,
then E[Y ] = E[E[Y |X]] = E[c] = c. Hence, if E[Y |X] does not depend on X,
that is, E[Y |X] equals a constant, then this constant must be equal to E[Y ].

1.6 Conditional Variance
The variance of Y given X is the variance of the conditional distribution of Y
given X. It is denoted Var[Y |X] and is defined to be

Var[Y |X] = E[(Y − E[Y |X])2|X] .

As with conditional expectations, it is important to understand that Var[Y |X]
is a random variable, whereas Var[Y |X = x] is a constant.

Example 3. Recall the setup of Example 1. Var[Y |X = 1] is the variance of
wages conditional on being male and Var[Y |X = 0] is the variance of wages
conditional on being female.

As with conditional expectations, anything that is a function of the condi-
tioning variable essentially behaves like a constant with respect to the condi-
tional variance.

For any random vector (X,Y ) and functions g : R→ R and h : R→ R,

Var[g(X) + h(X)Y |X] = h2(X)Var[Y |X] .

1.7 Independence
It is sensible to ask the extent to which two random variables are related. The
strongest notion of two random variables being unrelated is the notion of inde-
pendence.

Two random variables X and Y are independently distributed or, more suc-
cinctly, independent if for any A ⊆ R and B ⊆ R we have that

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B} .

In this sense, knowing something about X reveals nothing about Y and vice
versa.

Obviously, if X is a function of Y , then knowledge of X is completely in-
formative of Y , so X is not independent of Y . On the other hand, if X is
independent of Y , then any function of X is also independent of Y .

If (X,Y ) is a continuous random vector with p.d.f f(x, y), then independence
is equivalent to saying that

f(x, y) = f(x)f(y)
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for all (x, y) ∈ R2. Hence, for any y such that f(y) > 0,

f(x|y) =
f(x, y)

f(y)
=
f(x)f(y)

f(y)
= f(x) .

Since the conditional distribution of X given Y does not depend on Y when
X and Y are independent, X is mean independent of Y , that is, E[X|Y ] = E[X].
So, independence implies mean independence, but the reverse may not be true.
Take the wages and sex example. Even if the average wage is the same for males
and females, males could have a higher variance in wages in which case wages
would not be independent of sex.

For any two random variables X and Y that are independently distributed,

E[XY ] = E[X]E[Y ] .

You should be able to prove this using the Law of Iterated Expectations.
It is important to note that independence is not a transitive property. Let

(X,Y, Z) be a random vector. It is possible for X to be independent of Y , Y to
be independent of Z, but X to not be independent of Z.

2 Asymptotic Theory
Asymptotic theory studies the large-sample properties of estimators- properties
of the distribution of the estimator that hold approximately for large enough
sample sizes, that is, for large enough values of n. In many cases, the asymptotic
properties of estimators are much easier to derive than finite sample properties
so we use asymptotic approximations when the sample size is large- even if in
real life we only have finite samples. The sampling distribution of an estimator
is difficult to compute in general as it depends on the distribution of X1, . . . , Xn.

Take Xi i.i.d (independent and identically distributed) from a population
with mean µ and variance σ2.

After building up some mathematical results on convergence, we will show
that as the sample size gets large:

X̄n → µ

Z =
√
n(X̄n − µ)/σ → N(0, 1)

X̄n ≈ N(µ,
σ2

n
)

2.1 Convergence
What happens to random variables that depend on a sample as the sample
size goes to infinity? If the random variable An becomes extremely close to
some other random variable A that does not depend on the sample size, we
say that An has converged to A. To make this concept more precise, we can
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define four modes of convergence- convergence in probability, in distribution, in
mean square, and absolute surely. We will use convergence in probability and
convergence in distribution in this class.

2.1.1 Convergence in probability

Recall that a sequence of real numbers an, n ≥ 1 converges to another real
number a if for all ε > 0 there exists N = N(ε) such that for all n > N we have

|an − a| < ε .

But we are not dealing with a sequence of real numbers, but rather a sequence
of random variables. Convergence in probability generalizes the idea of conver-
gence of sequences of real numbers to sequences of random variables.

Let An, n ≥ 1 be a sequence of random variables and let A be another
random variable. We say that An converges in probability to A if for every
ε > 0 we have that

P{|An −A| > ε} → 0 .

In other words, as the sample size gets large, An no more than ε away from A
with high probability. We may write An converges in probability to A as

An
P→ A .

2.1.2 Convergence in Distribution

Let An, n ≥ 1 be a sequence of random variables and let A be a continuous
random variable. We say that An converges in distribution to A if their c.d.f.s
converge, that is, if the

P{An ≤ t} → P{A ≤ t}

for every t ∈ R. In this case, we write

An
d→ A .

If A has a special distribution, such as A ∼ N(0, 1), then we may write instead

An
d→ N(0, 1) .

If An
p→ A then An

d→ A but the reverse is not true.

2.1.3 CMT and Slutsky Thms:

Another useful technical tool is the continuous mapping theorem (CMT). It
holds for random vectors, but we will only state a version of it for d = 2.
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Theorem 4. If An, n ≥ 1 and Bn, n ≥ 1 are sequence of random variables and
a and b are constants that satisfy

An
P→ a

Bn
P→ b ,

and g : R2 → R is continuous at (a, b), then

g(An, Bn)
P→ g(a, b) .

The following result, known as Slutsky’s Theorem, is frequently useful as
well:

Theorem 5. Let An, n ≥ 1 and Bn, n ≥ 1 be sequences of random variables, let
A be another random variable, and let b be a constant. If An

d→ A and Bn
P→ b,

then

Bn +An
d→ b+A

BnAn
d→ bA

An/Bn
d→ A/b if b 6= 0 .

These results are extremely useful as expectations do not have all of these
properties. For example,

E(
An
Bn

) 6= E(An)

E(Bn)

E(log(An)) 6= logE(An)

The second equation is due to Jensen’s inequality:
If g(.) : < → < is convex, then for any random variable x for which E|x| <∞

and E|g(x)| <∞ ,

g(E(x)) ≤ E(g(x))

Thus finite sample results can become much harder to show than asymptotic
results.

2.2 LLN and CLT
2.2.1 LLN

The following result is known as the (weak) law of large numbers (WLLN). It
formalizes the intuitive idea of the expectation of a random variable.
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Theorem 6. Let X1, . . . , Xn be i.i.d. sample of size n from X. Suppose
Var[X] <∞. Then,

X̄n
P→ E[X] .

Proof. We will need the following auxillary result, which is known as Cheby-
chev’s Inequality: For any ε > 0 and any random variable A,

P{|A| > ε} ≤ E[A2]

ε2
.

To show that X̄n
P→ E[X], we must show that for any ε > 0 we have that

P{|X̄n − E[X]| > ε} → 0 .

To this end, apply Chebychev’s inequality to A = X̄n − E[X] to see that

P{|X̄n − E[X]| > ε} ≤ E[(X̄n − E[X])2]

ε2
.

But X̄n − E[X] is a mean-zero random variable, so

E[(X̄n − E[X])2] = Var[X̄n − E[X]] = Var[X̄n] =
Var[X]

n
.

Therefore,

P{|X̄n − E[X]| > ε} ≤ Var[X]

nε2
→ 0 ,

which completes the argument.
Professor Heckman had asked for this proof on the graduate core exams a

few years ago!
We call E(X) the probability limit or plim of X̄n.
It is in fact possible to weaken the requirement in the theorem that Var[X] <

∞ to only E[|X|] <∞, but it is much harder to prove this result. Another way
to prove this is using convergence in mean square.

In general, we will use the LLN to show that sample averages converge to
their expectations.

An estimator θ̂n of a parameter θ is said to be consistent if

θ̂n
P→ θ .

We have just shown that the sample mean is a consistent estimator of the
population mean, as it converges to the population mean.

Example 7. Let X1, . . . , Xn be i.i.d. sample of size n from X. Suppose
Var[X] < ∞. Then, the WLLN implies that the sample mean, X̄n, is con-
sistent for E[X].
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Let X1, . . . , Xn be i.i.d. sample of size n from X. Suppose E[X4] < ∞.
Remember that this implies that E[Xk] < ∞ for 1 ≤ k ≤ 4. Under this
condition, the WLLN implies that σ̂2

X is consistent for σ2
X . To see this, write

σ̂2
X =

1

n− 1

n∑
i=1

(Xi − X̄n)2

=
1

n− 1

n∑
i=1

((Xi − µX) + (µX − X̄n))2

=
1

n− 1

n∑
i=1

(Xi − µX)2 + 2(Xi − µX)(µX − X̄n) + (µX − X̄n)2

=
1

n− 1

n∑
i=1

(Xi − µX)2

+
1

n− 1

n∑
i=1

2(Xi − µX)(µX − X̄n) +
1

n− 1

n∑
i=1

(µX − X̄n)2

By the WLLN,

1

n− 1

n∑
i=1

(Xi − µX)2 P→ E[(Xi − µX)2] = σ2
X .

Also,

1

n− 1

n∑
i=1

2(Xi − µX)(µX − X̄n) = (µX − X̄n)
2

n− 1

n∑
i=1

(Xi − µX)

= (µX − X̄n)
2n

n− 1
(X̄n − µX)

= − 2n

n− 1
(X̄n − µX)2 ,

which tends to zero in probability by the CMT. Likewise,

1

n− 1

n∑
i=1

(µX − X̄n)2 =
n

n− 1
(µX − X̄n)2

also tends to zero in probability by the CMT. Thus, by the CMT,

σ̂2
X

P→ σ2
X .

Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample of size n from (X,Y ). Suppose
E[X4] <∞ and E[Y 4] <∞. Then, the sample covariance, σ̂X,Y , is a consistent
estimator of the covariance σX,Y . This can be proven using an argument similar
to the one used to show that the sample variance is a consistent estimator of
the variance. Moreover, by the CMT, we have that if σ2

X > 0 and σ2
Y > 0, then

ρ̂X,Y =
σ̂X,Y
σ̂X σ̂Y

P→ σX,Y
σXσY

= Corr[X,Y ] .
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2.2.2 CLT

The following result, known as the Central Limit Theorem (CLT), gives us the
result that we want.

Theorem 8. Let X1, . . . , Xn be i.i.d. sample of size n from X. Suppose 0 <
Var[X] <∞. Then,

X̄n − µX
σX√
n

d→ N(0, 1) .

In other words, for every t ∈ R,

P{X̄n − µX
σX√
n

≤ t} → Φ(t) ,

where Φ(t) is the c.d.f. of the standard normal distribution.

We call N(0, 1) the limiting distribution of X̄n−µXσX√
n

.

Example 9. Let X1, . . . , Xn be an i.i.d. sample of size n from X. Suppose
E[X4] <∞ and 0 < Var[X] <∞. We know from the CLT

X̄n − µX
σX√
n

d→ Z ,

where Z ∼ N(0, 1). We know from the WLLN,

σ̂2
X

P→ σ2
X > 0 .

From the CMT,
σX
σ̂X

P→ 1 .

By Slutsky’s Theorem,

X̄n − µX
σ̂X√
n

=
σX
σ̂X

X̄n − µX
σX√
n

d→ Z .

We can also derive results on functions of X̄n as well through the Delta Method
(or any function of a random variable with a limiting distribution):

Theorem 10. If
√
n(θn− θ)→d N(0,Σ) where θis m x 1 and Σ is m x m; and

g() : <m → <k, then:

√
n(g(θn)− g(θ0)) →d N(0,

d

dθ′
g(θ0)Σ

d

dθ′
g(θ0)′)

or, for m = 1:

√
n(g(θn)− g(θ0)) →d N(0, g′(θ0)2σ2)

The proof of this depends on taking a Taylor expansion.
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